Structure-Preserving Signatures on Equivalence Classes From Standard Assumptions

Mojtaba Khalili[‡], Daniel Slamanig[§], Mohammad Dakhilalian[‡]

ASIACRYPT 2019, Kobe, Japan, December 11, 2019

Isfahan University of Technology

AIT Austrian Institute of Technology

- Structure-Preserving Signatures and Applications
- Structure-Preserving Signatures on Equivalence Classes
- Overview of the State-of-the-Art
- Our Approach
- Take Home & Open Questions

Structure-Preserving Signatures and Applications

Bilinear groups

 $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ are cyclic groups of prime order p

 $\boldsymbol{\cdot} \ \boldsymbol{e}: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$

Bilinear groups

 $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ are cyclic groups of prime order p

 $\cdot \ e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$

Structure-Preserving Signatures (SPS)

 $(\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{KeyGen}(\mathsf{par}) : \mathsf{pk} \in \mathbb{G}_i^k \text{ with } \mathsf{s} \in \{\mathsf{1,2}\}$

Bilinear groups

 $\mathbb{G}_1,\,\mathbb{G}_2,\,\mathbb{G}_T$ are cyclic groups of prime order p

 $\cdot \ e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$

Structure-Preserving Signatures (SPS)

 $(\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{KeyGen}(\mathsf{par}) : \mathsf{pk} \in \mathbb{G}_i^k \text{ with } \mathsf{s} \in \{\mathsf{1,2}\}\$ $\sigma \leftarrow \mathsf{Sign}(\mathsf{sk},m) : m \in \mathbb{G}_i^n; \sigma \in \mathbb{G}_1^u \times \mathbb{G}_2^v$

Bilinear groups

 $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ are cyclic groups of prime order p

 $\cdot \ e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$

Structure-Preserving Signatures (SPS)

$$(\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{KeyGen}(\mathsf{par}) : \mathsf{pk} \in \mathbb{G}_i^k \text{ with } \mathbf{s} \in \{1,2\}$$

 $\sigma \leftarrow \mathsf{Sign}(\mathsf{sk},m) : m \in \mathbb{G}_i^n; \sigma \in \mathbb{G}_1^u \times \mathbb{G}_2^v$
 $\{\mathsf{0},\mathsf{1}\} \leftarrow \mathsf{Verify}(\mathsf{pk},m,\sigma) : \mathsf{Only uses}$

pairing-product equations

$$\prod_i \prod_j e(A_i, \hat{B}_j)^{a_{ij}} = Z$$
, and

group membership tests.

Compatible with efficient Groth-Sahai (GS) NIZK proofs

Numerous privacy-preserving applications

(Delegatable) anonymous credentials, group signatures, traceable signatures, blind signatures, anonymous e-cash, verifiable shuffles (e-voting), etc.

SPS that signs an equivalence class $[\mathbf{m}]_{\mathcal{R}}$.

- Produce signature given some representative
- Signature for one class is signature for **every** representative of that class

SPS that signs an equivalence class $[\mathbf{m}]_{\mathcal{R}}$.

- Produce signature given some representative
- Signature for one class is signature for **every** representative of that class

The equivalence relation $\sim_{\mathcal{R}}$

$$\mathbf{m} \in (\mathbb{G}_i^*)^\ell \sim_{\mathcal{R}} \mathbf{n} \in (\mathbb{G}_i^*)^\ell \Leftrightarrow \exists \mu \in \mathbb{Z}_p^* : \mathbf{m} = \mu \mathbf{n}$$

 $\cdot\,$ Vector $[\boldsymbol{m}]_1$ of group elements

- $\cdot\,$ Vector $[\boldsymbol{m}]_1$ of group elements
- EQ classes

 $\sim_{\scriptscriptstyle \mathcal{R}}~$ mutual ratios of DLOGs

- \cdot Vector $[\boldsymbol{m}]_1$ of group elements
- EQ classes
 - $\sim_{\scriptscriptstyle \mathcal{R}}~$ mutual ratios of DLOGs
- Sign representative

- \cdot Vector $[\boldsymbol{m}]_1$ of group elements
- EQ classes \sim_{π} mutual ratios of DLOGs
- Sign representative
- Switch representative using μ publicly
- Adapt signature to σ' publicly

- $\cdot \,$ Vector $[\boldsymbol{m}]_1$ of group elements
- EQ classes \sim_{π} mutual ratios of DLOGs
- Sign representative
- Switch representative using μ publicly
- Adapt signature to σ' publicly

Unlinkability on message space

• No advantage in distinguishing classes given representatives

Unlinkability of signatures (Adaption)

• Adapted signatures indistinguishable from fresh ones

Turned out to be a very versatile tool

- Avoid GS NIZKs
- Instead randomize message and adapt signature

Turned out to be a very versatile tool

- Avoid GS NIZKs
- Instead randomize message and adapt signature
- (Delegatable) anonymous credentials [HS14, DHS15, FHS19, CL19]
- Self-blindable certificates [BHKS18]
- Round-optimal blind signatures [FHS15, FHKS16]
- Group signatures [DS18, BHKS18, CS18, BHS19]
- Verifiably encrypted signatures [HRS15]
- Access control encryption [FGKO17]
- Scalable mix-nets [HPP19]

Example: Simple Anonymous Credentials v2.0

Formal Framework

SPS-EQ

 $\mathsf{par} \leftarrow \mathsf{ParGen}(\mathsf{1}^\lambda)$

\\allow others pars beyond **BG**

SPS-EQ

 $\mathsf{par} \leftarrow \mathsf{ParGen}(\mathsf{1}^{\lambda})$

```
(\mathsf{sk},\mathsf{pk}) \gets \mathsf{KeyGen}(\mathsf{par},\ell)
```

\\allow others pars beyond **BG**

SPS-EQ

 $\mathsf{par} \leftarrow \mathsf{ParGen}(\mathsf{1}^\lambda)$

 $(\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{KeyGen}(\mathsf{par},\ell)$

 $(\sigma, \tau) \leftarrow \mathsf{Sign}([\mathbf{m}]_i, \mathsf{sk})$

\\allow others pars beyond **BG**

SPS-EQ

par \leftarrow ParGen(1 $^{\lambda}$)\\allow others pars beyond BG(sk, pk) \leftarrow KeyGen(par, ℓ)(σ, τ) \leftarrow Sign([m]_i, sk)\\allow tag τ ([m']_i, σ') \leftarrow ChgRep([m]_i, (σ, τ), μ , pk)

SPS-EQ

par \leftarrow ParGen(1 $^{\lambda}$)\\allow others pars beyond BG(sk, pk) \leftarrow KeyGen(par, ℓ)(σ, τ) \leftarrow Sign([m]_i, sk)(\allow tag τ ([m']_i, σ') \leftarrow ChgRep([m]_i, (σ, τ), μ , pk)(\w/o tag τ {0, 1} \leftarrow Verify([m]_i, (σ, τ), pk)\\w/o tag τ

SPS-EQ

par \leftarrow ParGen(1 $^{\lambda}$)\\allow others pars beyond BG(sk, pk) \leftarrow KeyGen(par, ℓ)(σ, τ) \leftarrow Sign([m]_i, sk)\\allow tag τ ([m']_i, σ') \leftarrow ChgRep([m]_i, (σ, τ), μ , pk){0, 1} \leftarrow Verify([m]_i, (σ, τ), pk)\\w/o tag τ {0, 1} \leftarrow VKey(sk, pk)

SPS-EQ

par \leftarrow ParGen(1 $^{\lambda}$)\\allow others pars beyond BG(sk, pk) \leftarrow KeyGen(par, ℓ)(σ, τ) \leftarrow Sign([m]_i, sk)\\allow tag τ ([m']_i, σ') \leftarrow ChgRep([m]_i, (σ, τ), μ , pk){0, 1} \leftarrow Verify([m]_i, (σ, τ), pk)\\w/o tag τ {0, 1} \leftarrow VKey(sk, pk)

SPS-EQ

$par \gets ParGen(1^\lambda)$	\\allow others pars beyond BG
$(sk,pk) \leftarrow KeyGen(par,\ell)$	
$(\sigma, au) \leftarrow Sign([\mathbf{m}]_i, sk)$	\\allow tag $ au$
$([\mathbf{m}']_i, \sigma') \leftarrow ChgRep([\mathbf{m}]_i, (\sigma, \tau),$	μ , pk)
$\{0,1\} \leftarrow Verify([\mathbf{m}]_i,(\sigma,\tau),pk)$	\\w/o tag $ au$
${ extsf{0,1}} \leftarrow { extsf{VKey}(extsf{sk,pk})}$	

Tag-based schemes have one-time randomizability

• Only (σ, τ) from Sign can be put into ChgRep (enough for almost all applications)

EUF-CMA Security

 $\begin{array}{l} \mathsf{par} \leftarrow \mathsf{ParGen}(1^{\lambda}) \\ (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{KeyGen}(\mathsf{par},\ell) \end{array}$

 $\begin{array}{l} \text{Win}:\\ \text{Verify}([\mathbf{m}]_1^*,\sigma^*,\mathsf{pk})=1 \quad \wedge\\ [\mathbf{m}]_{\mathcal{R}}^*\neq [\mathbf{m}]_{\mathcal{R}} \end{array}$

Weak EUF-CMA Security [FG18]

 $\begin{array}{l} \mathsf{par} \leftarrow \mathsf{ParGen}(1^{\lambda}) \\ (\mathsf{sk},\mathsf{pk}) \leftarrow \mathsf{KeyGen}(\mathsf{par},\ell) \end{array}$

 $\begin{array}{l} \text{Win}:\\ \text{Verify}([\mathbf{m}]_1^*,\sigma^*,\mathsf{pk})=1 \quad \wedge\\ [\mathbf{m}]_{\mathcal{R}}^*\neq [\mathbf{m}]_{\mathcal{R}} \end{array}$

$$[\mathbf{m}]_1 \leftarrow \mathbf{s} [\mathbf{m}]_{\mathcal{R}} \ \approx \ [\mathbf{m}]_1 \leftarrow \mathbf{s} (\mathbb{G}_1^*)^\ell$$

$$[\mathbf{m}]_1 \leftarrow {}_{\mathbb{S}} [\mathbf{m}]_{\mathcal{R}} \ \approx \ [\mathbf{m}]_1 \leftarrow {}_{\mathbb{S}} (\mathbb{G}_1^*)^\ell$$

Assume DDH in \mathbb{G}_1^* \checkmark

$$[\mathbf{m}]_1 \leftarrow \mathbf{s} [\mathbf{m}]_{\mathcal{R}} \; \approx \; [\mathbf{m}]_1 \leftarrow \mathbf{s} (\mathbb{G}_1^*)^\ell$$

Assume DDH in \mathbb{G}_1^* \checkmark

Unlinkability of Signatures (Adaption)

 $(\mu[\mathbf{m}]_1, \operatorname{Sign}(\mu[\mathbf{m}]_1, \operatorname{sk})) \approx \operatorname{ChgRep}([\mathbf{m}]_i, \operatorname{Sign}([\mathbf{m}]_1, \operatorname{sk}), \mu, \operatorname{pk})$

$$[\mathbf{m}]_1 \leftarrow \mathbf{s} [\mathbf{m}]_{\mathcal{R}} \; \approx \; [\mathbf{m}]_1 \leftarrow \mathbf{s} (\mathbb{G}_1^*)^\ell$$

Assume DDH in \mathbb{G}_1^* 🗸

Unlinkability of Signatures (Adaption)

 $(\mu[\mathbf{m}]_1, \operatorname{Sign}(\mu[\mathbf{m}]_1, \operatorname{sk})) \approx \operatorname{ChgRep}([\mathbf{m}]_i, \operatorname{Sign}([\mathbf{m}]_1, \operatorname{sk}), \mu, \operatorname{pk})$

Keys and/or signature generated honestly or maliciously? Turns out to be quite subtle for applications

	Keys	Signatures
Honest	VKey(sk, pk) = 1 (HK)	
Malicious		

	Keys	Signatures
Honest	VKey(sk, pk) = 1 (HK)	
Malicious	Verify(, pk) = 1 (MK)	

	Keys	Signatures
Honest	VKey(sk, pk) = 1 (HK)	$\sigma \leftarrow Sign()$ (HS)
Malicious	Verify(, pk) = 1 (MK)	

	Keys	Signatures	
Honest	VKey(sk, pk) = 1 (HK)	$\sigma \leftarrow Sign()$ (HS)	
Malicious	Verify(, pk) = 1 (MK)	Verify $(\cdot, \sigma, \cdot) = 1$ (MS)	

	Keys	Signatures	
Honest	VKey(sk, pk) = 1 (HK)	$\sigma \leftarrow Sign()$ (HS)	
Malicious	Verify(, pk) = 1 (MK)	Verify $(\cdot, \sigma, \cdot) = 1$ (MS)	

In addition: Honest parameter model (HP)

- **par** generated honestly, but keys can be generated maliciously
- (MK,MS) in HP gives (HK,MS)

	Keys	Signatures	
Honest	VKey(sk, pk) = 1 (HK)	$\sigma \leftarrow Sign()$ (HS)	
Malicious	Verify(, pk) = 1 (MK)	Verify $(\cdot, \sigma, \cdot) = 1$ (MS)	

In addition: Honest parameter model (HP)

- **par** generated honestly, but keys can be generated maliciously
- \cdot (MK,MS) in HP gives (HK,MS)

- \cdot (HK,HS) introduced in [FG18]
- $\cdot\,$ (HK,MS) and (MK,MS) introduced in [FHS15]

Overview of the State-of-the-Art

Scheme	Unforgeability	Assumption	Adaption
[FHS15]	EUF-CMA	GGM	MK, MS

Scheme	Unforgeability	Assumption	Adaption
[FHS15]	EUF-CMA	GGM	MK, MS
[FG18]	Weak EUF-CMA*	DLIN	HK, HS**

*Weak EUF-CMA sufficient for most applications

**Adaption under honest keys and signatures (HK, HS) too weak for most applications (see Paper for details)

Scheme	Unforgeability	Assumption	Adaption
[FHS15]	EUF-CMA	GGM	MK, MS
[FG18]	Weak EUF-CMA*	DLIN	HK, HS**
This work	EUF-CMA	SXDH	MK, MS (HP)***

*Weak EUF-CMA sufficient for most applications

**Adaption under honest keys and signatures (HK, HS) too weak for most applications (see Paper for details)

***Sufficient for almost all applications

Scheme	Unforgeability	Assumption	Adaption
[FHS15]	EUF-CMA	GGM	MK, MS
[FG18]	Weak EUF-CMA*	DLIN	HK, HS**
This work	EUF-CMA	SXDH	MK, MS (HP)***

*Weak EUF-CMA sufficient for most applications

**Adaption under honest keys and signatures (HK, HS) too weak for most applications (see Paper for details)

***Sufficient for almost all applications

EUF-CMA Secure SPS-EQ from Standard Assumptions

Common technique to construct (tightly secure) SPS under standard assumptions

 \cdot One-time (SP) MAC \longmapsto Many-time (SP) MAC \longmapsto SPS

Numerous works [BKP14,KW15,KPW15,GHK17,GHKP18,AJOPRW19]

Common technique to construct (tightly secure) SPS under standard assumptions

 \cdot One-time (SP) MAC \longmapsto Many-time (SP) MAC \longmapsto SPS

Numerous works [BKP14,KW15,KPW15,GHK17,GHKP18,AJOPRW19]

- Weakly EUF-CMA secure SPS-EQ in [FG18] use [BKP14] as starting point
- We use [GHKP18] as a starting point

Starting from the MAC of [GHKP18]

Starting from the MAC of [GHKP18]

Hurdles to overcome

- Make MAC linear to switch within class
- \cdot Have malleable and perfectly randomizable proofs Ω

Starting from the MAC of [GHKP18]

Hurdles to overcome

- Make MAC linear \checkmark to switch within class
- · Have malleable and perfectly randomizable proofs $\boldsymbol{\Omega}$

Doubling of a modified MAC of [GHKP18]

First steps

- Add second "MAC" (to empty message), which acts as tag
- * Doubling OR-NIZK, sharing randomness
- Fix k = 1 (**A**₀, **A**₁ vectors) instantiation from SXDH only

Achieving Malleability and Perfect Randomizability

Modify the OR-NIZK of [GHKP18]

Problem

• [GHKP18] fixes $[\mathbf{Z}]_2$ in CRS and provide $[\mathbf{Z}_0]_2$ and $[\mathbf{Z}_1]_2$ s.t. $[\mathbf{Z}]_2 = [\mathbf{Z}_0]_2 + [\mathbf{Z}_1]_2$ and at least one is in span(\mathbf{Z})

Achieving Malleability and Perfect Randomizability

Modify the OR-NIZK of [GHKP18]

Problem

• [GHKP18] fixes $[\mathbf{Z}]_2$ in CRS and provide $[\mathbf{Z}_0]_2$ and $[\mathbf{Z}_1]_2$ s.t. $[\mathbf{Z}]_2 = [\mathbf{Z}_0]_2 + [\mathbf{Z}_1]_2$ and at least one is in span(\mathbf{Z})

Replace this part with a homomorphic QA-NIZK [JR14]

- Show that one of $[\mathbf{z}_0]_2$ and $[\mathbf{z}_1]_2$ is in span $(\mathbf{D} + \mathbf{z})$
- Preservers the soundness of OR-NIZK

Modify the OR-NIZK of [GHKP18]

Problem

• [GHKP18] fixes $[\mathbf{Z}]_2$ in CRS and provide $[\mathbf{Z}_0]_2$ and $[\mathbf{Z}_1]_2$ s.t. $[\mathbf{Z}]_2 = [\mathbf{Z}_0]_2 + [\mathbf{Z}_1]_2$ and at least one is in span(\mathbf{Z})

Replace this part with a homomorphic QA-NIZK [JR14]

- \cdot Show that one of $[\boldsymbol{z}_0]_2$ and $[\boldsymbol{z}_1]_2$ is in $\text{span}(\boldsymbol{D}+\boldsymbol{z})$
- Preservers the soundness of OR-NIZK

Malleable \checkmark and perfectly randomizable \checkmark proofs

Now supports additive update of the two OR-NIZK yielding a perfectly distributed fresh proof for witness $r' = r_1 + \psi r_2$ and word $[t']_1 = \mu[t]_1 + \psi[w]_1$

Scheme	Signature	PK	Ass.	Red. Loss
[FHS15]	$2 \mathbb{G}_1 +1 \mathbb{G}_2 $	$\ell \mathbb{G}_2 $	GGM	-
[FG18]	$(4\ell+2) \mathbb{G}_1 +4 \mathbb{G}_2 $	$(4\ell+2) \mathbb{G}_2 $	DLIN	$\mathcal{O}(Q)$
This work	$8 \mathbb{G}_1 +9 \mathbb{G}_2 $	$3\ell \mathbb{G}_2 $	SXDH	$\mathcal{O}(\log Q)^*$

Scheme	Signature	PK	Ass.	Red. Loss
[FHS15]	$2 \mathbb{G}_1 +1 \mathbb{G}_2 $	$\ell \mathbb{G}_2 $	GGM	-
[FG18]	$(4\ell+2) \mathbb{G}_1 +4 \mathbb{G}_2 $	$(4\ell+2) \mathbb{G}_2 $	DLIN	$\mathcal{O}(Q)$
This work	$8 \mathbb{G}_1 +9 \mathbb{G}_2 $	$3\ell \mathbb{G}_2 $	SXDH	$\mathcal{O}(\log Q)^*$

*Tightness inherited from [GHKP18]

• Group signatures in [DS18] and [BHKS18]

- Group signatures in [DS18] and [BHKS18]
- Access control encryption (ACE) in [FGKO17]

- Group signatures in [DS18] and [BHKS18]
- Access control encryption (ACE) in [FGKO17]
- Self-blindable certificates [BHKS18]

- Group signatures in [DS18] and [BHKS18]
- Access control encryption (ACE) in [FGKO17]
- Self-blindable certificates [BHKS18]
- Attribute-based credentials wo malicious issuer (or with a CRS) [HS14, FHS19]

- Group signatures in [DS18] and [BHKS18]
- Access control encryption (ACE) in [FGKO17]
- Self-blindable certificates [BHKS18]
- Attribute-based credentials wo malicious issuer (or with a CRS) [HS14, FHS19]
- Shortest round-optimal blind signatures with a CRS; improving by about a factor of 4 (using the template in [FHS15,FHKS16])

Take Home & Open Questions

Conclusion

Take Home

- SPS-EQ are a versatile tool for privacy-preserving applications
- First EUF-CMA secure SPS-EQ under standard assumptions (SXDH)

Conclusion

Take Home

- SPS-EQ are a versatile tool for privacy-preserving applications
- First EUF-CMA secure SPS-EQ under standard assumptions (SXDH)

Open Questions

- Apply our idea to other SPS to improve efficiency and/or support other assumptions
- Construct SPS-EQ under standard assumption that support malicious keys wo HP, i.e., (MK,MS)
 - · Constructions wo CRS seem very hard
 - Untrusted CRS?

Thank you! Questions?

♥ @drl3c7er

Supported by EU ECSEL

and FWF/netidee SCIENCE PROFET

Der Wissenschaftsfonds.

