
CRS-Updatable Asymmetric Quasi-Adaptive NIZK
Arguments

Behzad Abdolmaleki, and Daniel Slamanig

INDOCRYPT 2022

Max Planck Ins,tute for Security and Privacy, Germany
AIT Austrian Ins,tute of Technology, Vienna, Austria

26\

Motivation

2

crs

x ∈ L, w

π = P (crs, x, w)

V (crs, x, π) ?

Ø Quasi-Adap*ve NIZK (QA-NIZK) where the CRS
depends to the Language parameter .

QA-NIZK in CRS model

Ø Such a dependency of the CRS allows one to construct
very efficient QA-NIZKs (for linear language) based on
standard assumptions.

Ø QA-NIZK has applica,ons in construc,ng efficient
cryptographic primi,ves (commitment schemes, IBE,
signature schemes, SNARKs compilers, …)

M

M

26\

Motivation

3

crs

x ∈ L, w

π = P (crs, x, w)

V (crs, x, π) ?

Ø Quasi-Adap*ve NIZK (QA-NIZK) where the CRS
depends to the Language parameter.

NIZK in CRS model

Ø Such a dependency of the CRS allows one to construct
very efficient QA-NIZKs (for linear language) based on
standard assump,ons.

Ø QA-NIZK has applica,ons in construc,ng efficient
cryptographic primi,ves (commitment schemes, IBE,
signature schemes, SNARKs compilers, …)

Challenge:
Ø Such constructions need a trusted party to generate the CRS.
o Is the security guaranteed if the par,es do not trust the CRS

generator?

4

Preliminaries:

26\

NIZK in the CRS model

5

crs

x ∈ L, w

π = P (crs, x, w)

NIZK in CRS model

V (crs, x, π) ?

Definition: A NIZK argument system allows the prover to
convince the verifier of the validity of some statements
and must satisfy the following properties:

26\

NIZK in the CRS model

6

crs

x ∈ L, w

π = P (crs, x, w)

NIZK in CRS model

V (crs, x, π) ?

Defini+on: A NIZK argument system allows the prover to
convince the verifier of the validity of some statements
and must sa>sfy the following proper>es:

Completeness:

Soundness:

Zero-Knowledge:

𝑥 ∈ 𝐿 => 𝑉 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝜋

𝑥 ∉ 𝐿 => 𝑉 𝑟𝑒𝑗𝑒𝑐𝑡𝑠 𝜋

𝜋 𝑙𝑒𝑎𝑘𝑠 𝑛𝑜𝑡ℎ𝑖𝑛𝑔 𝑏𝑒𝑦𝑜𝑛𝑑 𝑥 ∈ 𝐿

7

- Quasi-Adaptive NIZK
-Asymmetric Quasi-Adaptive NIZK

26\

Quasi-Adaptive NIZK (QA-NIZK)

8

OK, xÎL
Witness w
(x,w) Î RL

CRS

§ Language parameter M is chosen before the CRS
§ M cannot adaptively depend on the CRS
§ Usually, M = some public key

M

26\

Quasi-Adaptive NIZK (QA-NIZK)

9

OK, xÎL
Witness w
(x,w) Î RL

CRS
proof

§ Language parameter M is chosen before the CRS
§ M cannot adapDvely depend on the CRS
§ Usually, M = some public key

M

•Applications in constructing efficient cryptographic primitives (commitment schemes,
IBE, signature schemes, SNARKs compilers, …)

26\

Quasi-Adaptive NIZK (QA-NIZK)

10

OK, xÎL
Witness w
(x,w) Î RL

CRS
proof

|Proof | = 1 group element

[Roy-Julta Asiacrypt2013] [Roy-Jutla Crypto2014] [Kiltz-Wee Eurocrypt2015]

§ Language parameter M is chosen before the CRS
§ ρ cannot adapDvely depend on the CRS
§ Usually, M = some public key

M

•Applica=ons in construc>ng efficient cryptographic primi>ves (commitment schemes,
IBE, signature schemes, SNARKs compilers, …)

26\11

● [Kiltz-Wee Eurocrypt 2015]
● most efficient known QA-NIZK for SUBSPACE language

● Task of QA-NIZK for SUBSPACE:
● Fix language parameter M ! ∈ 𝐺" ×$

● Prove in zero knowledge that [�⃗�]!= M !𝑤 for some 𝑤 ∈ ℤ%$

𝐿 = �⃗� B ∈ 𝐺BC | ∃ 𝑤 ∈ ℤDE 𝑠. 𝑡 [�⃗�]B = M B𝑤

Let 𝐺!, 𝐺", 𝐺# be additive groups of order 𝑝
Denote [𝑎]$= 𝑎𝑔$ where 𝑔$ is generator of 𝐺$ and 𝑎 ∈ ℤ%
Assume ⋅: 𝐺!×𝐺" → 𝐺# is a bilinear map

[𝐴]![𝐵]"= [𝐴𝐵]# for compatible matrices A, 𝐵

Quasi-Adaptive NIZK (QA-NIZK)

Proof

26\12

● [González et al. ASIACRYPT 2015]
● most efficient known asymmetric QA-NIZK for SUBSPACE language

● Task of Asymmetric QA-NIZK for SUBSPACE:
● Fix language parameter M ! ∈ 𝐺!" ×$ and N & ∈ 𝐺&" ×$

● Prove in zero knowledge that:

Let 𝐺!, 𝐺", 𝐺# be addi,ve groups of order 𝑝
Denote [𝑎]$= 𝑎𝑔$ where 𝑔$ is generator of 𝐺$ and 𝑎 ∈ ℤ%
Assume ⋅: 𝐺!×𝐺" → 𝐺# is a bilinear map

[𝐴]![𝐵]"= [𝐴𝐵]# for compa,ble matrices A, 𝐵

Asymmetric Quasi-Adaptive NIZK (QA-NIZK)

𝐿 = �⃗� !, �⃗� " ∈ 𝐺!#×𝐺"#| ∃ 𝑤 ∈ ℤ$% 𝑠. 𝑡 �⃗� ! = M !𝑤 ⋀ �⃗� "= N &𝑤

Proof

26\

NIZKs in Different Subversion Model

13

V

CRS

P

Proof

The CRS Model
(i.e., [EC:Groth16])

26\

NIZKs in Different Subversion Model

14

V

CRS

P

Proof

The CRS Model
(i.e., [EC:Groth16])

CRS

Proof

Subversion Zero-Knowledge model
(i.e., [AC:ABLZ17] [PKC:Fuc18])

26\

NIZKs in Different Subversion Model

15

V

CRS

P

Proof

The CRS Model
(i.e., [EC:Groth16])

CRS

Proof

Subversion Zero-Knowledge model
(i.e., [AC:ABLZ17] [PKC:Fuc18])

Proof

Updatable model
(i.e., [C:GKM+18]…)

CRS

26\

State-of-Art of QANIZK in the Updatable setting

16

…

QA-NIZK in the CRS Model
Privacy-preserving

technologies

Updatable QA-NIZKs
[Lipmaa20]

QA-NIZK [KW15] Asymmetric QA-NIZK
[CHR15]

26\

State-of-Art of QANIZK in the Updatable setting

17

…

QA-NIZK in the CRS Model
Privacy-preserving

technologies

Updatable QA-NIZKs
[Lipmaa20]

QA-NIZK [KW15] Asymmetric QA-NIZK
[CHR15]

Updatable Asymmetric QA-
NIZKs (?)

18

Our Results:

26\19

● Zero-knowledge and soundness hold even if CRS creator is
not trusted.

Proof

Soundness => verifier does not need to trust CRS – just apply a new Up-crs algorithm
and update the CRS to CRS’.

ZK => prover does not need to trust CRS – just apply a new Vcrs algorithm.

Our main result: Updatable Asymmetric QA-NIZK

crs crs

26\20

Our recipe:

● Zero-knowledge and soundness hold even if CRS creator is
not trusted.

Proof

Soundness => verifier does not need to trust CRS – just apply a new Up-crs algorithm
and update the CRS to CRS’.

ZK => prover does not need to trust CRS – just apply a new Vcrs algorithm.

GHR15 asymmetric QA-NIZK in the CRS model.

Our main result: Updatable Asymmetric QA-NIZK

crs crs

26\21

Our recipe:

● Zero-knowledge and soundness hold even if CRS creator is
not trusted.

Proof

Soundness => verifier does not need to trust CRS – just apply a new Up-crs algorithm
and update the CRS to CRS’.

ZK => prover does not need to trust CRS – just apply a new Vcrs algorithm.

GHR15 asymmetric QA-NIZK in the CRS model.

Updatable Soundness

● Making CRS Updatable
Design a new algorithm Up-crs for updating the
CRS to CRS’:

(CRS’, crs-Proof) ← Up-crs(M ! , N ", CRS)

Our main result: Updatable Asymmetric QA-NIZK

crs crs

26\22

Our recipe:

● Making CRS publicly verifiable
Design a public algorithm Vcrs for checking
CRS’ is correct
● If Vcrs(M ! , N ", CRS&, CRS) = 1: there

exists some trapdoor tc

● Zero-knowledge and soundness hold even if CRS creator is
not trusted.

Proof

Soundness => verifier does not need to trust CRS – just apply a new Up-crs algorithm
and update the CRS to CRS’.

ZK => prover does not need to trust CRS – just apply a new Vcrs algorithm.

GHR15 asymmetric QA-NIZK in the CRS model.

Updatable Soundness

● Making CRS Updatable
Design a new algorithm Up-crs for updating the
CRS to CRS’:

(CRS’, crs-Proof) ← Up-crs(M ! , N ", CRS)

Updatable ZK

Our main result: Updatable Asymmetric QA-NIZK

crs crs

26\23

Our recipe:

● Making CRS publicly verifiable
Design a public algorithm Vcrs for checking
CRS’ is correct
● If Vcrs(M ! , N ", CRS&, CRS) = 1: there

exists some trapdoor tc

● Zero-knowledge and soundness hold even if CRS creator is
not trusted.

Proof

Soundness => verifier does not need to trust CRS – just apply a new Up-crs algorithm
and update the CRS to CRS’.

ZK => prover does not need to trust CRS – just apply a new Vcrs algorithm.

Proving updatable ZK
If Vcrs(M ! , N ", CRS, CRS′) = 0: no need to simulate
If Vcrs(M ! , N ", CRS, CRS′) = 1:
Use extractor Ext to recover tc from CRS’ by BDH-KE assump,on.

GHR15 asymmetric QA-NIZK in the CRS model.

Updatable Soundness

● Making CRS Updatable
Design a new algorithm Up-crs for updating the
CRS to CRS’:

(CRS’, crs-Proof) ← Up-crs(M ! , N ", CRS)

Updatable ZK

Our main result: Updatable Asymmetric QA-NIZK

crs crs

26\24

Other results

● Knowledge Sound version of Asymmetric QA-NIZK CHR15 (ASIACRYPT’15) and the
updatable Asymmetric QA-NIZK.

26\25

Other results

● Knowledge Sound version of Asymmetric QA-NIZK CHR15 (ASIACRYPT’15) and the
updatable Asymmetric QA-NIZK.

● How to integrate our updatable Knowledge Sound QA-NIZKs (and also
Knowledge Sound version of Asymmetric QA-NIZK CHR15) into the
LegoSNARK toolbox.
Our results together with existing results on updatable zk-SNARKS represent an
important step towards an updatable variant of the LegoSNARK toolbox (with the
extension by the proposed updatable Knowledge Sound QA-NIZKs)

26\26

Other results

● Knowledge Sound version of Asymmetric QA-NIZK CHR15 (ASIACRYPT’15) and the
updatable Asymmetric QA-NIZK.

● How to integrate our updatable Knowledge Sound QA-NIZKs (and also
Knowledge Sound version of Asymmetric QA-NIZK CHR15) into the
LegoSNARK toolbox.
Our results together with existing results on updatable zk-SNARKS represent an
important step towards an updatable variant of the LegoSNARK toolbox (with the
extension by the proposed updatable Knowledge Sound QA-NIZKs)

Open Problems:
● (Sub-ZK) QA-NIZK with Simulation-Sound Extractability

Thank you

