CRS-Updatable Asymmetric Quasi-Adaptive NIZK
Arguments

Behzad Abdolmaleki, and Daniel Slamanig

Max Planck Institute for Security and Privacy, Germany
AIT Austrian Institute of Technology, Vienna, Austria

TOMORROW TODAY

MAX-PLANCK-GESELLSCHAFT

INDOCRYPT 2022

Motivation

» Quasi-Adaptive NIZK (QA-NIZK) where the CRS
depends to the Language parameter M |

» Such a dependency of the CRS allows one to construct
very efficient QA-NIZKs (for linear language) based on
standard assumptions.

QA-NIZK has applications in constructing efficient
cryptographic primitives (commitment schemes, IBE,
signature schemes, SNARKs compilers, ...)

QA-NIZK in CRS model

Motivation

» Quasi-Adaptive NIZK (QA-NIZK) where the CRS
depends to the Language parameter.

» Such a dependency of the CRS allows one to construct
very efficient QA-NIZKs (for linear language) based on
standard assumptions.

» QA-NIZK has applications in constructing efficient

cryptographic primitives (commitment schemes, IBE,
signature schemes, SNARKs compilers, ...)

—

Challenge:

» Such constructions need a trusted party to generate the CRS.
o Isthe security guaranteed if the parties do not trust the CRS
generator?

NIZK in CRS model

Preliminaries:

NIZK in the CRS model

Definition: A NIZK argument system allows the prover to
convince the verifier of the validity of some statements
and must satisfy the following properties:

NIZK in CRS model

NIZK in the CRS model

Definition: A NIZK argument system allows the prover to
convince the verifier of the validity of some statements
and must satisfy the following properties:

Completeness: X€L => Vacceptsn
Soundness: x¢&L => Vrejectsm

Zero-Knowledge: m leaks nothing beyond x € L

NIZK in CRS model

- Quasi-Adaptive NIZK

-Asymmetric Quasi-Adaptive NIZK

Quasi-Adaptive NIZK (QA-NIZK)

= Language parameter M is chosen before the CRS
= M cannot adaptively depend on the CRS
= Usually, M = some public key

Quasi-Adaptive NIZK (QA-NIZK)

= Language parameter M is chosen before the CRS
= M cannot adaptively depend on the CRS
Usually, M = some public key

*Applications in constructing efficient cryptographic primitives (commitment schemes,
IBE, signature schemes, SNARKs compilers, ...)

Quasi-Adaptive NIZK (QA-NIZK)

|Proof | =1 group element

= Language parameter M is chosen before the CRS
= pcannot adaptively depend on the CRS
= Usually, M = some public key

*Applications in constructing efficient cryptographic primitives (commitment schemes,
IBE, signature schemes, SNARKs compilers, ...)

[Roy-Julta Asiacrypt2013] I_J})[Roy-JutIa Crypto2014] LJ}) [Kiltz-Wee Eurocrypt2015]

26\10

Quasi-Adaptive NIZK (QA-NIZK)

Let G4, G5, G be additive groups of order p
Denote [a];= ag; where g; is generator of G; and a € Z,,

Assume -: G1XG, — G is a bilinear map
[A]1[B],= [AB]y for compatible matrices A, B

e [Kiltz-Wee Eurocrypt 2015]
» most efficient known QA-NIZK for SUBSPACE language

e Task of QA-NIZK for SUBSPACE:
» Fixlanguage parameter [M], € G"**™

» Prove in zero knowledge that [y],= [M],w for some w € Z}}

L={[y].€G]|3wWE I3t s.t [y], = [M],w}

Asymmetric Quasi-Adaptive NIZK (QA- NIZK)

Let G4, G, G be additive groups of order p
Denote [a];= ag; where g; is generator of ; and a € Z,
Assume -: G; XG, — G is a bilinear map

[A]1|B],= [AB]r for compatible matrices A, B

® [Gonzalez et al. ASIACRYPT 2015]
o most efficient known asymmeiric QA-NIZK for SUBSPACE language

e Task of Asymmetric QA-NIZK for SUBSPACE:
o Fix language parameter [M], € GI**™ and [N], € G} *™

e Prove in zero knowledge that:

L ={[y]y,[X], € GI'XG}| IW € Z} s.t

NIZKs in Different Subversion Model

NIZKs in Different Subversion Model

NIZKs in Different Subversion Model

Updatable model
(i.e., [C:GKM+18]...)

26\15

State-of-Art of QANIZK in the Updatable setting

Privacy-preserving
technologies

|

State-of-Art of QANIZK in the Updatable setting

Privacy-preserving

| P \
|

i e il B W il

Our Results:

Our main result: Updatable Asymmetric QA-NIZK

e Zero-knowledge and soundness hold even if CRS creator is
not trusted.

Soundness => verifier does not need to trust CRS — just apply a new Up-crs algorithm
and update the CRS to CRS'.

ZK == prover does not need to trust CRS — just apply a new Vcrs algorithm.

Our main result: Updatable Asymmetric QA-NIZK

e Zero-knowledge and soundness hold even if CRS creator is
not trusted.

Soundness => verifier does not need to trust CRS — just apply a new Up-crs algorithm
and update the CRS to CRS'.

ZK == prover does not need to trust CRS — just apply a new Vcrs algorithm.

Our main result: Updatable Asymmetric QA-NIZK

e Zero-knowledge and soundness hold even if CRS creator is
not trusted.

Soundness => verifier does not need to trust CRS — just apply a new Up-crs algorithm
and update the CRS to CRS'.

ZK == prover does not need to trust CRS — just apply a new Vcrs algorithm.

e Making CRS Updatable
Design a new algorithm Up-crs for updating the
CRSto CRS™:

(CRS’, crs-Proof) « Up-crs([M]; ,[N],, CRS)

Our main result: Updatable Asymmetric QA-NIZK

e Zero-knowledge and soundness hold even if CRS creator is
not trusted.

Soundness => verifier does not need to trust CRS — just apply a new Up-crs algorithm
and update the CRS to CRS'.

ZK == prover does not need to trust CRS — just apply a new Vcrs algorithm.

Our recipe:

Updatable Soundney‘ P <N Updatable ZK

Making CRS Updatable Making CRS publicly verifiable
Design a new algorithm Up-crs for updating the Design a public algorithm Vcrs for checking
CRS to CRS’: CRS’ is correct

e IfVcers([M], ,[N],,CRS’,CRS) = 1: there
(CRS’, crs-Proof) « Up-crs([M]; ,[N],, CRS) exists some trapdoor tc

Our main result: Updatable Asymmetric QA-NIZK

e Zero-knowledge and soundness hold even if CRS creator is
not trusted.

Soundness => verifier does not need to trust CRS — just apply a new Up-crs algorithm
and update the CRS to CRS'.

ZK == prover does not need to trust CRS — just apply a new Vcrs algorithm.

Updatable Soundney' e "N Updatable ZK

e Making CRS Updatable Making CRS publicly verifiable
Design a new algorithm Up-crs for updating the Design a public algorithm Vcrs for checking
CRS to CRS’: CRS’ is correct

e IfVcers([M], ,[N],,CRS’,CRS) = 1: there
(CRS’, crs-Proof) « Up-crs([M]; ,[N],, CRS) xists some trapdoor tc

Proving updatable ZK
If Vers([M], ,[N],, CRS, CRS") = 0: no need to simulate
If Vers([M], ,[N],, CRS,CRS") =1:
Use extractor Ext to recover tc from CRS’ by BDH-KE assu

Other results

e Knowledge Sound version of Asymmetric QA-NIZK CHR15 (ASIACRYPT’15) and the
updatable Asymmetric QA-NIZK.

Other results

e Knowledge Sound version of Asymmetric QA-NIZK CHR15 (ASIACRYPT’15) and the
updatable Asymmetric QA-NIZK.

How to integrate our updatable Knowledge Sound QA-NIZKs (and also
Knowledge Sound version of Asymmetric QA-NIZK CHR15) into the
LegoSNARK toolbox.

Our results together with existing results on updatable zk-SNARKS represent an
important step towards an updatable variant of the LegoSNARK toolbox (with the

extension by the proposed updatable Knowledge Sound QA-NIZKs)

Other results

e Knowledge Sound version of Asymmetric QA-NIZK CHR15 (ASIACRYPT’15) and the
updatable Asymmetric QA-NIZK.

How to integrate our updatable Knowledge Sound QA-NIZKs (and also
Knowledge Sound version of Asymmetric QA-NIZK CHR15) into the
LegoSNARK toolbox.

Our results together with existing results on updatable zk-SNARKS represent an
important step towards an updatable variant of the LegoSNARK toolbox (with the

extension by the proposed updatable Knowledge Sound QA-NIZKs)

Open Problems:
® (Sub-ZK) QA-NIZK with Simulation-Sound Extractability

AI I AUSTRIAN INSTITUTE
OF TECHNOLOGY

TOMORROW TODAY

MAX-PLANCK-GESELLSCHAFT

Thank you

