
Modern Cryptography December 27, 2019

Solutions to Homework 9

Tutoren: Karen Klein, Guillermo Pascual Perez Due: 23.59 CET, Dec 11, 2019

To get credit for this homework it must be submitted no later than Wednesday, December
11th via TUWEL. If you have not registered for the tutorial (192.063 Tutorial on Introduc-
tion to Modern Cryptography 2019W) on TUWEL, please do so. If you are unable to register
for the course on TUWEL for some reason, submit your homework via email to via email to
michael.walter@ist.ac.at, please use “MC19 Homework 9” as subject.

1. Groups

• Let N ∈ Z>0 and let G = Z∗
N . Prove that G is a group under the operation a · b :=

(a · b) mod N .

Solution: We prove that G = Z∗
N = {a ∈ ZN | gcd(a,N) = 1} satisfies the properties

of a group. Let a, b, c ∈ G be arbitrary elements.

– Closure: Since both a and b are coprime to N , by unique prime factorization also
ab ∈ Z is coprime to N . To prove closure, we have to show that gcd(ab mod N,N) =
1. To this aim, recall that for all k ∈ Z there exist X,Y ∈ Z such that gcd(k,N) =
X ·k+Y ·N and the greatest commen divisor is the smallest positive integer that can
be written in this form. Now, let X,Y ∈ Z be such that gcd(ab,N) = X ·ab+Y ·N .
Since ab = [ab mod N] + qN for some q ∈ Z, we get

1 = gcd(ab,N) = Xab+Y N = X([ab mod N]+qN)+Y N = X·[ab mod N]+(q+Y)·N.

This implies gcd(ab mod N,N) = 1, i.e., G is closed.

– Unit element: Since gcd(1, N) = 1, we have 1 ∈ G and 1 · a = a = a · 1 for all
a ∈ G.

– Inverses: By definition, for all a ∈ G we have gcd(a,N) = 1. Thus, there exist
X,Y ∈ Z such that Xa + Y N = 1. Writing X = qN + [X mod N] for some integer
q, we get

1 = Xa + Y N = (qN + [X mod N]) · a + Y N

= [X mod N] · a + (aq + Y)N = [X mod N] · a mod N.

Thus, [X mod N] is the inverse of a modulo N and obviously [X mod N] ∈ G.

– Associativity: For ab = [ab mod N] + qN with q ∈ Z, it holds

[[a · b mod N] · c mod N] = [(ab− qN) · c mod N] = [abc mod N]

and similarly for bc = [bc mod N] + pN with p ∈ Z

[a · [b · c mod N] mod N] = [a · (bc− pN) mod N] = [abc mod N].

PS9-1

• List the elements of Z∗
17; What is its order?; What are the orders of 2 and 5?; Is Z∗

17

cyclic?

Solution: Since 17 is a prime, all integers 1 ≤ x ≤ 16 are coprime to 17, thus

Z∗
17 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, ⇒ |Z∗

17| = 16.

By Proposition 8.54, the order of any element in a group divides the group order. Hence,
all elements in Z∗

17 have order 1,2,4, 8, or 16, and one can compute the orders of 2 and
5 as

21 = 2, 22 = 4, 24 = 16, 28 = 256 = 1 mod 17 ⇒ ord(2) = |〈2〉| = 8.

51 = 5, 52 = 25 = 8 mod 17, 54 = (52)2 = 64 = 13 mod 17,

58 = (54)2 = (−4)2 = 16 = −1 mod 17 ⇒ ord(5) = |〈5〉| = 16.

Since the order of 5 is equal to the order of the group, 5 is a generator mod 17 and,
thus, Z∗

17 is cyclic. Alternatively, one can apply Theorem 8.56, which states that for any
prime p the multiplicative group Z∗

p is cyclic.

• Let G and H be groups. Show that G×H is a group (with × being the direct product).

Solution: Let the groups operations of G and H be denoted by + and ·, respectively. We
prove that the direct product G×H with the operation (g1, h1)◦(g2, h2) = (g1+g2, h1 ·h2)
satisfies the properties of a group. Let g1, g2, g3 ∈ G and h1, h2, h3 ∈ H be arbitrary group
elements.

– Closure: By closure of G and H, we have g1 + g2 ∈ G and h1 · h2 ∈ H. Thus,
(g1, h1) ◦ (g2, h2) = (g1 + g2, h1 · h2) ∈ G×H.

– Unit element: Let 0G, 1H be the unit elements in G,H, respectively. Then
(0G, 1H) ∈ G×H is the unit element in G×H:

(0G, 1H)◦(g1, h1) = (0G+g1, 1H ·h1) = (g1, h1) = (g1+0G, h1·1H) = (g1, h1)◦(0G, 1H).

– Inverses: Let −g1, h−1
1 be the respective inverses of of g1 and h1 in G and H. Then

(−g1, h−1
1) ∈ G×H is the inverse of (g1, h1):

(−g1, h−1
1) ◦ (g1, h1) = (−g1 + g1, h

−1
1 · h1) = (1G, 1H),

(g1, h1) ◦ (−g1, h−1
1) = (g1 − g1, h1 · h−1

1) = (1G, 1H).

– Associativity: By associativity of G and H, the following sequence of equations
holds: (

(g1, h1) ◦ (g2, h2)
)
◦ (g3, h3) = (g1 + g2, h1 · h2) ◦ (g3, h3)

=
(
(g1 + g2) + g3, (h1 · h2) · h3

)
= (g1 + g2 + g3, h1 · h2 · h3).

(g1, h1) ◦
(
(g2, h2) ◦ (g3, h3)

)
= (g1, h1) ◦ (g2 + g3, h2 · h3)

=
(
g1 + (g2 + g3), h1 · (h2 · h3)

)
= (g1 + g2 + g3, h1 · h2 · h3).

PS9-2

2. Algorithmic aspects

• Compute 1014800000002 mod 35 (by hand).

Solution: We have |Z∗
35| = ϕ(35) = ϕ(5)ϕ(7) = 4 · 6 = 24. Thus

1014800000002 mod 35 ≡ 1014800000002 mod 24 mod 35 ≡ 1012 mod 35

≡ (−4)2 mod 35 ≡ 16 mod 35 .

• Use the Extended Euclidean Algorithm (extGCD) to compute X, Y for a = 2493 and
b = 8709. Illustrate all steps.

Solution: We have

8709 = 3 · 2493 + 1230

2493 = 2 · 1230 + 33

1230 = 37 · 33 + 9

33 = 3 · 9 + 6

9 = 1 · 6 + 3

6 = 2 · 3 + 0

Thus gcd(2493, 8709) = gcd(8709, 2493) = 3. Further, we obtain

3 = 9− 1 · 6
= 9− 1 · (33− 3 · 9) = 4 · 9− 33

= 4 · (1230− 37 · 33)− 33 = 4 · 1230− 149 · 33

= 4 · 1230− 149 · (2493− 2 · 1230) = 302 · 1230− 149 · 2493

= 302 · (8709− 3 · 2493)− 149 · 2493 = 302 · 8709− 1055 · 2493.

Thus X = −1055 and Y = 302.

• [B.2 in book, 2nd edition] Prove that the extGCD runs in time polynomial in the
length of its inputs.

Solution: Let a and b denote the inputs to extGCD and assume w.l.o.g. that a ≥ b. We
show that extGCD runs in time polynomial in dlog(a)e by first bounding the number of
recursive calls to extGCD and then analyzing the running time of the computations at
each level of the recursion.

At every level of the recursion the algorithm computes an expression of the form ai =
qibi + ri and sets ai+1 := bi, bi+1 := ri. Thus, we always have bi+1 < bi. We show that
for every i we have bi+2 ≤ bi/2. Indeed, if bi+1 ≤ bi/2 then bi+2 < bi+1 ≤ bi/2. If, on
the other hand, bi+1 > bi/2 then we have

bi+2 = ri+1 = ai+1 − qi+1bi+1 = bi − qi+1bi+1 = bi − bi+1 < bi/2,

PS9-3

where qi+1 = 1 follows since 2bi+1 > bi = qi+1bi+1 + ri+1 > bi+1, and the last equality
again holds since bi+1 > bi/2. Hence bi+2 < bi/2 for all i. As bi > 0 for all i this implies
that there are at most 2dlog(b)e recursive calls to extGCD.

At every level of the recursion the algorithm performs one division with remainder and,
when updating the values for X and Y , computes one multiplication and one subtraction.

Note that ai, bi, qi, and ri are bounded from above by a. We proceed by computing
bounds for X and Y as well. To this end, denote by Xi and Yi the values assigned to X
and Y at the end of the ith recursion call. We show inductively that for every i we have
|Xi| ≤ bi and |Yi| ≤ ai. Let k be the index of the last time the recursion is called, i.e., let
k such that ak = qkbk + 0. Our induction hypothesis holds for i = k since |Xk| = 0 ≤ bk
and |Yk| = 1 ≤ ak. Assuming that the induction hypothesis holds for i+ 1 we show that
it also holds for i. Indeed;

|Xi| = |Yi+1| ≤ ai+1 = bi

|Yi| = |Xi+1 − qiYi+1| ≤ |Xi+1|+ qi |Yi+1| ≤ bi+1 + qiai+1 = ri + qibi = ai,

where in the last inequality of each line we used the induction hypothesis.

Summing up, the algorithm performs at most 2dlog(b)e divisions with remainder, multi-
plications, and subtractions of integers of size at most a. Since each of those operations
can be computed in time polynomial in dlog(a)e we conclude that extGCD runs time
polynomial in the length of its inputs.

PS9-4

