
Modern Cryptography Jan 15, 2020

Homework 13

Lecturer: Daniel Slamanig, TA: Guillermo Perez, Karen Klein Due: 23.59 CET, Jan 22, 2020

To get credit for this homework it must be submitted no later than Wednesday, January 15th
via TUWEL. If you have not registered for the tutorial (192.063 Tutorial on Introduction to
Modern Cryptography 2019W) on TUWEL, please do so. If you are unable to register for the
course on TUWEL for some reason, submit your homework via email to via email to guillermo.

pascualperez@ist.ac.at, please use “MC19 Homework 13” as subject.

1. Derandomizing signatures

• (3 Points) Let Σ = (KGen, Sign,Verify) be an EUF-CMA secure signature scheme, where
the signing algorithm Sign is probabilistic. In particular, algorithm Sign uses randomness
r chosen from a space R. We let Sign(sk ,m; r) denote the execution of algorithm Sign
with randomness r. Let F be a secure pseudo-random function (PRF) with key space K
and output space being R. Prove that the signature scheme Σ′ = (KGen′, Sign′,Verify)
is also EUF-CMA secure, where

KGen′: Run (sk , pk)← KGen(1λ), k←$K, set sk ′ := (sk , k) and return (sk ′, pk).

Sign′: Compute r ← F (k,m), σ ← Sign(sk ,m; r) and output σ.

Solution: Let’s first consider an scheme Σ′′ which is intermediate to Σ and Σ′. Σ′′ is similar
to Σ′ except that instead of a PRF F it relies on a function f (to which it has oracle access)
picked at random from the set of all functions. That is, Σ′′ = (KGen, Sign′′,Verify), where

Sign′′: Compute r ← f(m), σ ← Sign(sk ,m; r) and output σ.

Since f is a random function, it is not hard to see that the advantages that a forger has
against Σ′′ and Σ are the same.

The Reduction. Next, we design an algorithm R which relates the security of the PRF F
to the security of Σ′′ and Σ′. That is, R plays the PRF indistinguishability game and the
euf-cma game with a forger A at the same time. R is given access to an oracle F(·) which
is either Fk(·) (real) or f(·) (random) and its goal is to distinguish real from random. First
it runs KGen to sample a key-pair (pk , sk) and passes pk on to A, whose goal is to forge a
signature on pk . Whenever A queries for the signature on a message m, R first relays it to F
to obtain r = F(m). Next, it computes the signature σ = Sign(sk ,m; r) and returns it to the
adversary. At the end of the euf-cma game A returns a forgery (m∗, σ∗) and R outputs 1 iff
this forgery valid.

Analysis. Since F is a secure PRF, we know that∣∣∣Pr
[
RFk(·) = 1

]
− Pr

[
Rf(·) = 1

]∣∣∣ = negl(λ). (1)

PS13-1

Note that when F(·) = Fk(·), R simulates Σ′ to A; on the other hand, when F(·) = f(·), R
simulates Σ′′ to A. It follows from eq.(1) that∣∣∣Pr

[
Sig-forgeeuf-cma

A,Σ′ = 1
]
− Pr

[
Sig-forgeeuf-cma

A,Σ′′ = 1
]∣∣∣ = negl(λ).

Since Σ′′ is a secure signature scheme,

Pr
[
Sig-forgeeuf-cma

A,Σ′ = 1
]

= negl(λ),

and by basic algebraic manipulation we get

Pr
[
Sig-forgeeuf-cma

A,Σ′′ = 1
]

= negl(λ).

2. Attack on derandomized signatures

• (1.5 Points) Consider the Schnorr signature scheme (see slide 21 of Lecture 13) using
the derandomization strategy in Task 1. Present a detailed attack that recovers the
secret signing key if we assume that you can introduce a single bit fault into the signing
process (as discussed on slide 23 of Lecture 13).

Solution: Let’s first write the resulting signature scheme Σ′S = (KGen′S , Sign
′
S ,Verify

′
S):

• KGen′S : G, q, g) ← G(1n), x
$←− Zq, k

$←− K. Returns (sk, pk) = ((x, k), (G, q, g, y := gx))
and a hash function H : {0, 1}∗ → Zq.
• Sign′S : Define ` := F (k,m) and compute I := g`, r := H(I,m), s := rx + ` mod q.

Output the signature σ = (r, s).

• Verify′S : compute I := gs ·y−r and output 1 if H(I,m) = r (verification does not change).

To perform the attack, we will query for the signature on any given message twice getting
signatures (r1, s1) and (r2, s2) respectively, introducing a single bit fault into the second
execution. In particular, we will introduce the fault during the computation of r := H(I,m),
so that the resulting signature (r2, s2) satisfies r2 6= r1 (and therefore also s2 6= s1, since `
is the same in both executions, as it was already computed at the time of the fault). The
difference between r2 and r1 can be a single bit, all we care about is that r2−r1 6= 0. Overall,
we obtain two signatures, each satisfying the equation

si = rix+ ` mod q .

Combining both, we get:

s1 − r1x = s2 − r2x mod q

⇒ x = (s2 − s1)(r2 − r1)−1 mod q .

Since r2 − r1 6= 0, the inverse exists and we have recovered x.

PS13-2

3. One-time signatures

• Let us consider the signature scheme Σ in Fig. 1 with message space M = {0, 1}∗ and
hash function H : {0, 1}∗ → Zq (which we assume to be sampled randomly from the
hash function family {Hk}k∈K).

– (0.5 Points) Show that the scheme is correct

KGen(1λ):

- G = (G, q, g)← GGen(1λ);
- H ←$ {Hk}k∈K;
- α, β←$Zq;
- u := gα; v := gβ ;
- (sk , pk) := ((α, β), (u, v,G, H))
- return (sk , pk).

Sign(sk ,m):

- σ := H(m)α+ β mod q;
- return σ.

Verify(pk ,m, σ):

- if gσ = v · uH(m) return 1
else return 0.

Figure 1: Signature scheme Σ.

Solution: Let m ∈M be arbitrary, let ((α, β), (u, v,G, H)) = (sk , pk) be a key pair
generated with KGen, and let σ = Sign(sk ,m). Then we have

gσ = gH(m)α+β = (gα)H(m) · gβ = uH(m) · v.

Hence Verify(pk ,m, σ) = 1.

– (3.5 Points) Prove the following theorem:

Theorem 1 If the discrete-logarithm problem is hard relative to G and H is modeled
as a random oracle, then the signature scheme is EUF-1-CMA secure.

Solution: Assume that A is a PPT adversary that breaks the EUF-1-CMA security
game with non-negligible probability. We construct a PPT adversary B using A as
a black box that solves the discrete logarithm problem with respect to GGen with
non-negligible probability. B on input of (G, x = gτ) is going to use the discrete
logarithm challenge x as u and set up v in a way that allows it to compute without
knowledge of the τ a valid signature on a message m as long as its hash value equals
a particular h ∈ Zp. Signatures on messages without this property, on the other
hand, will allow B to compute the discrete logarithm of x. Since H is modeled as a
random oracle B can program it such that it will evaluate to h on the single signing
query m.
Before we describe B in detail we argue that without loss of generality we may
assume that A satisfies the following properties:

· A never queries the random oracle RO on the same input twice, since otherwise
we can replace it by an adversary with the same success probability that forwards
”fresh” queries to the random oracle, stores the corresponding answer in a list,
and answers all other queries using its list.

· When A queries the singing oracle on a messagem then RO(m) is already defined,
since otherwise we could replace A with an adversary that makes one additional
RO query and achieves the same success probability.

PS13-3

· Let m be the message the adversary has seen a signature on and m∗ the message
output as part of the forgery attempt. Then m 6= m∗, since otherwise we could
replace A with an adversary that simply aborts in this case.

We now describe B. Let QRO be an upper bound on the number of random-oracle
queries of A. Note that since A runs in polynomial time QRO is polynomially
bounded. On input of the DL-challenge (G, x) with x = gτ , B samples σ, h←$Zq
and sets u← x, v ← x−h · gσ. Then it samples an index j←$ {1, . . . , QRO} and runs
adversary A on input pk = (u, v,G).
Since H is modeled as a random oracle B has to provide A with a random-oracle
procedure RO. Adversary B answers the jth query mj to RO with h. All other
queries are answered with values from Zq sampled uniformly at random.
At some point A asks for a signature on a message m. If m = mj adversary B
answers the query with σ. Else it aborts.
At the end of the game A outputs (m∗, σ∗). Let h∗ = RO(m∗). If h∗ = h adversary B
aborts. Otherwise it returns (σ∗ − σ)/(h∗ − h) mod q as the solution of its discrete
logarithm challenge.
It is easy to verify that B runs in polynomial time. We will show that:

(a) If B does not abort and A succeeds in forging a signature then B computes the
discrete logarithm of x.

(b) The probability that B does not abort is bounded from below by (1−1/q)/QRO.

(c) B provides A with a perfect simulation of the EUF-1-CMA game unless it aborts.

Items (a),(b),(c) imply that

Pr[DLogB] = Pr[DLogB | no abort] Pr[no abort] + Pr[DLogB | abort] Pr[abort]

≥ Pr[DLogB | no abort] Pr[no abort]

≥ 1− 1/q

QRO
Pr[DLogB | no abort]

≥ 1− 1/q

QRO
Pr[EUF-1-CMAA],

which is non-negligible since QRO is polynomially bounded and Pr[EUF-1-CMAA]
was assumed to be non-negligible. Thus if the discrete logarithm problem is hard
with respect to GGen then the scheme is EUF-1-CMA secure.
It remains to prove (a),(b), and (c). Regarding (a), consider the forgery (m∗, σ∗).
If σ∗ is a valid signature on m∗ then by our choice of u and v we have

gσ
∗

= uh
∗ · v = gτh

∗ · g−τh+σ,

which is equivalent to
σ∗ − σ = τ(h∗ − h) mod q.

If B does not abort we have that h∗ 6= h and B correctly computes τ = (σ∗−σ)/(h∗−
h) mod q.
We now prove (b). B can either abort when A poses its signing query m or after it
outputs its forgery attempt. The former happens if m 6= mj . Since we may assume

PS13-4

that m ∈ {m1, . . . ,mQRO
}, and j was sampled uniformly in {1, . . . , QRO} and is

independent of all the adversaries queries we obtain that Pr[m = mj] = 1/QRO. Now
consider the forgery attempt (m∗, σ∗). Since H is modeled as a random oracle and
hence its outputs are uniformly distributed we have that Pr[RO(m) = RO(m∗)] =
1/q, where we used that we may assume m 6= m∗. Thus in the latter case with
probability at least 1− 1/q adversary B does not abort. Overall, we can bound the
probability of B not aborting by (1/1− q)/QRO.
Finally we show that (c) holds. Assume that B does not abort. Consider σ returned
as response to the signing query on m. Since B did not abort we have m = mj and
hence RO(m) = h. Thus v·uRO(m) = x−hgσ ·xh = gσ and σ is indeed a valid signature
on m. We conclude by showing that all values provided to A have the correct
distribution. For i ∈ {1, . . . , QRO} denote by hi the value RO(mi) and consider the
joint distribution of (u, v, h1, . . . , hQRO

). In the scheme as defined in Figure 1 this is

the uniform distribution over G×G×ZQRO
q . In the game simulated by B for all i 6= j

the values hi are uniformly random in Zq and independent of all other values. The
remaining values are u = gτ , v = g−τh+σ, and hj = h. To see that their distribution
is indeed uniform over G × G × Zq, note that, for all u′ = gτ

′
, v′ = gν

′ ∈ G, and
h′ ∈ Zp we have Pr[u = u′, v = v′, h = h′] = Pr[τ = τ ′, h = h′, σ = ν ′ + τ ′h′] = q−3.
Hence, unless B aborts, the simulation of the EUF-1-CMA game is perfect.

– (1.5 Point) Show that Σ is not two-time secure: given signatures on two distinct
messages m0 and m1 in Zq, the adversary can forge the signature on every message
m ∈ Zq of its choice.

Solution: The central observation for this exercise is, that, unless the hash values
of the messages collide, two valid signatures are enough to compute the secret key
of the scheme.
More precisely, we construct an adversary A against EUF-q-CMA for q ≥ 2 as follows.
A picks two arbitrary messages m1, m2 with m1 6= m2. Let h1 = H(m1) and
h2 = H(m2). If h1 = h2 then A asks for a signature σ1 on m1. It then returns the
forgery (σ1,m2). If, on the other hand, h1 6= h2 then it asks for signatures σ1, σ2 on
m1 and m2. It then computes the unique solution (α, β) of the following system of
linear equations over Zq (

h1 1
h2 1

)
·
(
α
β

)
=

(
σ1

σ2

)
.

Then for arbitrarym3 /∈ {m1,m2} it returns the forgery (σ3,m3) with σ3 = H(m3)α+
β. We argue that in both cases A computed a valid signature on the respective mes-
sage.
Indeed, if h1 = h2 then

uH(m2) · v = uh2 · v = uh1 · v = gσ1 ,

where the last equation holds since σ1 is a valid signature on m1. It follows that
Verify(pk ,m2, σ1) = 1. If, on the other hand, h1 6= h2 then since σ1 and σ2 are valid
signatures we have that

gσ1 = uh1 · v and gσ2 = uh2 · v,

PS13-5

which is equivalent to

σ1 = h1α+ β and σ2 = h2α+ β,

where addition and multiplication are in Zq. The equations can be rewritten as
the system of linear equations from above. Note that the matrix has a nonzero
determinant since h1 6= h2. Thus the systems unique solution is the private key
(α, β) which in turn allows to compute signatures on arbitrary messages.

PS13-6

