
Modern Cryptography Jan 8, 2020

Homework 12

Lecturer: Daniel Slamanig, TA: Guillermo Perez, Karen Klein Due: 23.59 CET, Jan 15, 2020

To get credit for this homework it must be submitted no later than Wednesday, January 15th via
TUWEL. If you have not registered for the tutorial (192.063 Tutorial on Introduction to Modern
Cryptography 2019W) on TUWEL, please do so. If you are unable to register for the course on
TUWEL for some reason, submit your homework via email to via email to michael.walter@ist.

ac.at, please use “MC19 Homework 12” as subject.

1. Relation among Notions

• (4.5 Points) Provide explicit reductions between all the consecutive security properties
on slide 13 (Lecture 12). More precisely, show via reductions the following: IND-CCA2
=⇒ IND-CCA1, IND-CCA1 =⇒ IND-CPA, IND-CPA =⇒ OW-CPA.

Solution: All proofs will follow the form of contraposition (A =⇒ B ⇐⇒ ¬B =⇒ ¬A)

(a) IND-CCA2 =⇒ IND-CCA1:
Assuming an adversary A that breaks IND-CCA1 security of a scheme, we construct A′
to break IND-CCA2 security. On input pk, forwards pk to A. Any decryption queries
made will be forwarded to the oracle. Note that there are no encryption queries, as A
possesses the public key. When A sends (m0,m1), we pass this on and receive c∗, which
is sent back to A. A will make now make no more queries and only send b∗, which we
forward to win with the same probability as A.

(b) IND-CCA1 =⇒ IND-CPA:
Analogous to above, we assume an adversary A that breaks IND-CPA security of a
scheme with non-negl. probability. We construct A′ to break IND-CCA1 security of the
scheme. We simply forward between the two parties: pk is received and passed on to A,
who in turn sends us (m0,m1), which we pass on. We forward c∗ to A, who then gives
us b∗, with which we win with the same (non-negl.) probability as A. No decryption
queries are used, as A does not have access to them.

(c) IND-CPA =⇒ OW-CPA:
Assume there exists an adversary A that breaks OW-CPA security of a scheme. That
means, on input (pk, c∗), it returns the corresponding message m∗ with non-negl. prob-
ability. We construct the adversary A′ who, on input pk, sends (m0,m1) and receives
c∗. They then initialize A with (pk, c∗). A returns m. If m = m0, they send b∗ = 0,
otherwise b∗ = 1. As A returns the correct message with non-negl. probability, A′ wins
with non-negl. probability as well.

PS12-1

2. Hybrid Encryption

• (2 Points) Let Π = (Gen,Enc,Dec) be a CPA-secure public-key encryption scheme, and
let Π′ = (Gen′,Enc′,Dec′) be a CCA-secure private-key encryption scheme. Consider the
following construction:

Let H : {0, 1}n → K′ be a function. Construct a public-key encryption scheme as
follows:

Gen∗: on input 1n , run Gen(1n) to obtain (pk , sk). Output these as the public and
private keys, respectively.

Enc∗: on input a public key pk and a message m ∈M′, choose uniform r1, r2 ∈M
and output the ciphertext

(Encpk (r1),Encpk (r2),Enc
′
H(r1⊕r2)(m))

Dec∗: on input a private key sk and a ciphertext (c1, c2, c3), compute r1 :=
Decsk (c1), r2 := Decsk (c2) and set k := H(r1 ⊕ r2). Then output Dec′k(c3).

Is the above construction IND-CCA secure, if H is modeled as a random oracle? If yes,
provide a proof. If not, provide an attack.

Solution: The scheme is not IND-CCA secure. The main observation is that for every
ciphertext (c1, c2, c3) we have

Dec∗(c1, c2, c3) = Dec′H(Decsk (c1)⊕Decsk (c2))
(c3) = Dec′H(Decsk (c2)⊕Decsk (c1))

(c3) = Dec∗(c2, c1, c3).

We can exploit this to mount an attack A on the scheme as follows. A on input of the public
key queries the challenge oracle on some messages (m0,m1) with m0 6= m1. The challenger
responds with an encryption (c∗1, c

∗
2, c
∗
3) of mb where b is the challenge bit. If c∗1 6= c∗2 the

adversary queries the decryption oracle on the ciphertext c = (c∗2, c
∗
1, c
∗
3). Note that c∗1 6= c∗2

implies c 6= c∗ and hence the query is answered with the decryption m of c. By the equation
above we have m = mb. Hence in this case A is able to determine b with probability 1. If,
on the other hand, c∗1 = c∗2 then A outputs an random guess b∗ for b, which is correct with
probability 1/2.

To compute A’s advantage we bound the probability of the event {c∗1 = c∗2}. Since the scheme
satisfies correctness it is not possible that there exist r1 6= r2 such that Encpk (r1) = Encpk (r2).
Denote by r∗1 and r∗2 the two random messages sampled during the encryption of mb. We
hence can bound the probability of {c∗1 = c∗2} occurring by Pr[c∗1 = c∗2] ≤ Pr[r∗1 = r∗2] ≤ 1/|M |
where M is the message space of Π. We obtain the following bound on the success probability

PS12-2

of A;

Pr[PubKcca
A,Π∗(n) = 1]

= Pr[PubKcca
A,Π∗(n) = 1 | c∗1 6= c∗2] Pr[c∗1 6= c∗2] + Pr[PubKcca

A,Π∗(n) = 1 | c∗1 = c∗2] Pr[c∗1 = c∗2]

=1 · Pr[c∗1 6= c∗2] + 1/2 · Pr[c∗1 = c∗2]

=1 · (1− Pr[c∗1 = c∗2]) + 1/2 · Pr[c∗1 = c∗2]

=1− 1/2 · Pr[c∗1 = c∗2]

≥1− 1/2 · Pr[r∗1 = r∗2]

≥1− 1/2 · 1/|M |
≥1− 1/2 · 1/2 = 3/4 ≥ 1/2 + negl(n),

showing that Π∗ is not CCA-secure. In the third to last inequality we used that |M | has size
at least 2.

3. RSA Encryption

• [11.14 in book, 2nd edition] (3.5 Points) Consider the following modified version of
padded RSA encryption: Assume messages to be encrypted have length exactly ‖N‖/2.
To encrypt, first compute m̂ := 0x00‖r‖0x00‖m where r is a uniform string of length
‖N‖/2 − 16. Then compute the ciphertext c := m̂e mod N . When decrypting a ci-
phertext c, the receiver computes m̂ := cd mod N and returns an error if m̂ does not
consist of 0x00 followed by ‖N‖/2− 16 arbitrary bits followed by 0x00. Show that this
scheme is not CCA-secure. Why is it easier to construct a chosen-ciphertext attack on
this scheme than on PKCS #1 v1.5 (discussed in the lecture)?

Solution: CCA attacks on this modified scheme are easier than on PKCS #1 v1.5 because it is
easier to come up with valid ciphertexts!

For the attack itself, we construct an adversaryA. We receive pk = (N, e) and send (m0,m1),m0 6=
m1. We receive the encryption c∗ = m̂e mod N, m̂ = 0x00‖r‖0x00‖mb of one of our messages.
We then generate a uniformly random s ← Z∗N and query the decryption oracle with c := se · c∗
mod N = (s · m̂)e mod N . If the oracle returns a message m = s ·mb mod N , we divide it by s
to receive mb. This will equal one of our original messages. We then send the corresponding b and
win the game with absolute certainty. If the oracle returns an error, we give up.

This clearly runs in polynomial time, but we still need to show that we produce valid padding
with nong-negl. probability. Of the 2‖N‖ possible messages, 2‖N‖−16 have valid padding (as two
bytes are fixed). Therefore, the probability of generating a valid message is 2−16, which is constant,
and thus non-negligible!

PS12-3

