
Modern Cryptography Dec 17, 2019

Homework 11

Lecturer: Daniel Slamanig, TA: Karen Klein, Guillermo Perez Due: 23.59 CET, Jan 8, 2020

To get credit for this homework it must be submitted no later than Wednesday, December 11th via
TUWEL. If you have not registered for the tutorial (192.063 Tutorial on Introduction to Modern
Cryptography 2019W) on TUWEL, please do so. If you are unable to register for the course on
TUWEL for some reason, submit your homework via email to via email to michael.walter@ist.

ac.at, please use “MC19 Homework 11” as subject.

1. Textbook RSA Encryption

• Prove the correctness of the textbook RSA encryption algorithm as introduced in the
lecture, i.e., show that for all n ∈ N, ((N, d), (N, e))← KeyGen(1n) any m ∈ ZN it holds
that (me)d ≡ m (mod N).

Solution: We have two different cases to consider. First, if m is in Z∗N , then m|Z
∗
N | =

mφ(N) ≡ 1 (mod N). Thus, since e · d ≡ 1 (mod φ(N)), we have

(me)d = me·d ≡ me·d mod φ(N) ≡ m (mod N)

.

What if m is not in Z∗N? In that case, the Chinese Remainder Theorem tells us that
we have an isomorphism ZN ∼= Zp × Zq, where N = p · q, both prime (this was seen in
Tutorial 9). Moreover this isomorphism is given by mapping x ∈ ZN to (x mod p, x
mod q) ∈ Zp × Zq. In particular, (me)d ≡ m (mod N) if and only if:

(me)d ≡ m (mod p) ∧ (me)d ≡ m (mod q)

Thus, we only need to check these two equalities. Now, since m 6∈ Z∗N, gcd(m,N) 6= 1,
which implies that one of p or q divides m (both cannot divide m, since then m ≥ N).
Assume without loss of generality that p divides m. In this case, m ≡ 0 (mod p), so
clearly

(me)d ≡ (0e)d ≡ 0 ≡ m (mod p)

On the other hand, since gcd(m, q) = 1, then m ∈ Z∗q . Also, e · d ≡ 1 (mod φ(N))
implies e · d ≡ 1 (mod φ(q)), since φ(q) | φ(N). Thus, by the same argument as above,
(me)d ≡ m (mod q).

• [11.20 in book, 2nd edition] Fix an RSA public key (N, e) and assume we have
an algorithm A that always correctly computes lsb(x) (i.e., the least significant bit of
x) given xe mod N . Write full pseudocode for an algorithm A′ that computes x from
xe mod N .

PS11-1

Solution:

Lets define γ = [2−1 mod N] to be the inverse of 2 modulo N . The idea is to use γ to
bit-wise right-shift x and use A to learn all the bits of x one-by-one, as xe · γe = (x · γ)e

mod N .

If lsb(x) = 0 then [γ · x] mod N] is indeed just a right-shift of x (as x is divisible by
2), so to obtain the ` right-most bits of x, we just need to obtain the ` − 1 right-most
bits of [γ · x] mod N] and append a 0 to the right. If lsb(x) = 1, however, [γ · x]
mod N] = [(x+N)/2 mod N], so multiplying by γ does not correspond to a right-shift.
We claim the following however: the ` right-most bits of x are the ` right-most bits of
2x′ −N , where x′ consists of the `− 1 right-most bits of [γ · x mod N].

To see this, lets first define the function b(y, d) to be the function returning the d right-
most bits of y (essentially, b(y, d) = y mod 2d, it just makes notation slightly easier).
Our claim from before can be reformulated as:

b(x, `) = (2 · b(γ · x mod N, `− 1)−N) mod 2`

Now observe that:

2 · b(γ · x mod N, `− 1) mod 2` = b(2 · γ · x mod N, `) mod 2`

= (2 · γ · x mod N) mod 2`

=⇒
(2 · b(γ · x mod N, `− 1)−N) mod 2` = ((2 · γ · x) mod N −N) mod 2`

= (2 · γ · x−N mod N mod 2`

= (2 · γ · x mod N) mod 2`

= b(2 · γ · x mod N, `)

= b(x mod N, `)

= b(x, `)

Thus, applying the previous reasoning recursively, we can recover x. The following
algorithm GetBits illustrates this.

Input: 〈N, e〉; c ∈ Z∗N ; `
Output: the ` least significant bits of [c1/e mod N]
if ` = 1 then

return A(N, e, c)
else

x0 := A(N, e, c)
γ := [2−1 mod N]
x′ = GetBits(N, e, [c · γe mod N], `− 1)
if x0 = 0 then

return x′||x0
else

return [2x′ −N mod 2`]
end

end
Algorithm 1: Algorithm GetBits

PS11-2

• A message m is encrypted using textbook RSA encryption with keys (493, 3) and (493, 5)
yielding ciphertexts 293 and 421 respectively. Use the fact that the two public keys share
the same modulus to recover m and describe how the attack works (Hint: common
modulus attack).

Solution: We know that

m3 = [293 mod 493]

m5 = [421 mod 493]

Now, since 3 and 5 are coprime, using the extended euclidean algorithm, we can find
integers x, y such that

3x+ 5y = gcd(3, 5) = 1

In this particular case x = 2, y = −1 satisfy the equation. This implies that

(m3)x · (m5)y = (m3)2 · (m5)−1 = m mod 493

Note that if (m2)−1 did not exist, m−1 would not exist, so m and N would not be coprime
- and thus we would have found a factor of N . Hence, we can assume the inverse exists,
in which case it can be easily calculated using the extended Euclidean algorithm.

493 = 1 · 421 + 72

421 = 5 · 72 + 61

72 = 1 · 61 + 11

61 = 5 · 11 + 6

11 = 1 · 6 + 5

6 = 1 · 5 + 1

and hence

1 = 6− 5

1 = 6− (11− 6) = 2 · 6− 11

1 = 2 · (61− 5 · 11)− 11 = 2 · 61− 11 · 11

1 = 2 · 61− 11 · (72− 61) = 13 · 61− 11 · 72

1 = 13 · (421− 5 · 72)− 11 · 72 = 13 · 421− 76 · 72

1 = 13 · 421− 76 · (493− 421) = 89 · 421− 76 · 493

which implies
89 · 421 = 1 mod 493.

and so, 89 is the inverse of 421.

PS11-3

Thus,
m = 2932 · 89 = 47 mod 493

Note that this works in general if e1, e2 in the public keys (N, e1), (N, e2) are coprime.
If they are not, we will only be able to find mgcd(e1, e2).

2. Insecure Public-Key Encryption

• Let us assume the following public-key encryption scheme. Choose integers a, b, a′, b′ ∈ N,
with a > 1, b > 1, and compute:

M = ab− 1, e = a′M + a, d = b′M + b, n =
ed− 1

M
.

The public key is (n, e), the private key is d. To encrypt a plaintext m, one computes
c = em mod n. Alice decrypts a ciphertext c as m = cd mod n.

– Verify that decryption recovers the message.

Solution: Observe that ed = 1 + nM and therefore ed = 1 mod n. It follows that

cd mod n = emd mod n

= med mod n (Associativity)

= m mod n (By observation above).

– Show how the Euclidean algorithm can be efficiently used to break the encryption
scheme.

Solution: By the observation above that ed = 1 mod n, it follows that e is in-
vertible modulo n. Therefore its inverse e−1 mod n can be found out using the
Extended Euclidean algorithm (as we saw in the lecture). Now we can extract the
message from a ciphertext c = em mod n by simply computing

e−1c = e−1em = m mod n.

PS11-4

