
Modern Cryptography January 14, 2020

Solutions to Homework 10

Name: Karen Klein, Guillermo Pascual Perez Due: 23.59 CET, Dec 18, 2019

To get credit for this homework it must be submitted no later than Wednesday, December
11th via TUWEL. If you have not registered for the tutorial (192.063 Tutorial on Introduc-
tion to Modern Cryptography 2019W) on TUWEL, please do so. If you are unable to register
for the course on TUWEL for some reason, submit your homework via email to via email to
michael.walter@ist.ac.at, please use “MC19 Homework 10” as subject.

1. Key-Exchange

• [10.1 in book, 2nd edition] Let Π be a key-exchange protocol, and (Enc,Dec) be
a private-key encryption scheme. Consider the following interactive protocol Π′ for
encrypting a message: first, the sender and receiver run Π to generate a shared key k.
Next, the sender computes c ← Enck(m) and sends c to the other party, who decrypts
and recovers m using k.

– Formulate a definition of indistinguishable encryptions in the presence of an eaves-
dropper (cf. Definition in part 1 of the lecture) appropriate for this interactive
setting.

– Prove that if Π is secure in the presence of an eavesdropper and (Enc,Dec) has
indistinguishable encryptions in the presence of an eavesdropper, then Π′ satisfies
your definition.

Solution: Let Π be an arbitrary key-exchange protocol, ΠEnc = (Gen,Enc,Dec) a
symmetric-key encryption scheme, and Π′ the interactive protocol constructed from Π
and ΠEnc as above. Define the experiment KE−Enceav

A,Π,ΠEnc
(n) between an eavesdropping

adversary A and the protocol Π′ as follows:

– A receives the security parameter 1n in unary, chooses two messages m0,m1 of equal
length and outputs (m0,m1).

– Let (k, trans) be the output of an (interactive) run of Π between two honest parties
on input 1n.

– Let b ← {0, 1} uniformly random and c ← Enck(mb) and encryption of mb under
key k.

– The adversary A receives the transcript trans and the ciphertext c, and outputs a
bit b∗.

– The output of the experiment is 1 if b∗ = b, 0 else.

Definition 1 The interactive protocol Π′ has indistinguishable encryptions in the pres-
ence of an eavesdropper if for every PPT adversary A there exists a negligible function
negl such that

Pr[KE− Enceav
A,Π,ΠEnc

(n) = 1] ≤ 1/2 + negl(n).
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If Π is secure in the presence of an eavesdropper and ΠEnc has indistinguishable encryp-
tions in the presence of an eavesdropper, then Π′ satisfies definition 1. To prove this, we
proceed in two steps: First, we show that by the security of the key-exchange protocol Π
the encryption scheme Π′ is indistinguishable from a (non-functional) scheme Π̄′ where
instead of using the key k output by Π, the encryption mechanism samples a uniformly
random fresh key k′ ← {0, 1}n and encrypts mb under k′ (note that in order to use
the eavesdropping security of ΠEnc k

′ should be the output of Gen(1n), which might not
be uniform; we ignore this technicality and assume that Gen outputs a uniform key).
Further, observe that Π̄′ uses a completely independent key, thus, in the second step,
we argue that by the eavesdropping security of ΠEnc an encryption of m0 under Π̄′ is
indistinguishable from an encryption of m1.

Let A be an arbitrary PPT adversary and write

Pr[KE− Enceav
A,Π,ΠEnc

(n) = 1] = Pr[A(trans, c← Enck(mb)) = b].

First, we prove

Pr[A(trans, c← Enck(mb)) = b] ≤ Pr[A(trans, c← Enck∗(mb)) = b] + negl1(n) (1)

for a uniformly random key k∗ by constructing an adversary AKE against the security of
the key-exchange protocol Π as follows:

– On input the security parameter 1n, the adversary AKE receives a challenge pair
(k∗, trans) where (k, trans) ← Π(1n) and k∗ := k if bKE = 0 and k∗ ← K uniformly
at random and independently of trans if bKE = 1, where bKE ← {0, 1} uniformly
random and K is the range of Gen(1n).

– Then AKE runs A on input 1n and receives two messages m0,m1.

– AKE samples b ← {0, 1} uniformly at random, computes c ← Enck∗(mb) and sends
(trans, c) to A.

– AKE receives b∗ from A and outputs b∗KE = 0 if b∗ = b and b∗KE = 1 else.

If bKE = 0, then AKE correctly simulates KE−Enceav
A,Π,ΠEnc

(n) and wins the game KEeav
AKE,Π

(n)
if and only if A wins. On the other hand, if bKE = 1, then AKE wins the game if and only
if A does not win the modified game. Thus, we have

Pr[KEeav
AKE,Π

(n) = 1] =
1

2
· (Pr[KEeav

AKE,Π
(n) = 1 | bKE = 0] + Pr[KEeav

AKE,Π
(n) = 1 | bKE = 1])

=
1

2
· (Pr[A(trans, c← Enck(mb)) = b] + Pr[A(trans, c← Enck∗(mb)) = 1− b])

=
1

2
· (Pr[A(trans, c← Enck(mb)) = b] + 1− Pr[A(trans, c← Enck∗(mb)) = b])

Since Π is secure in the presence of an eavesdropper, we have Pr[KEeav
AKE,Π

(n) = 1] ≤
1/2+ negl′1(n) for some negligible function negl′1, which implies (1) with negl1 = 2 ·negl′1.

We will now show that the alternative scheme Π̄′ has indistinguishable encryptions,
namely that the following equation holds:

Pr[A(trans, c← Enck∗(mb)) = b] ≤ 1

2
+ negl2(n) (2)
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for some negligible function negl2(n). Plugging this into (1) we get the desired result, as
negl1(n) + negl2(n) is also negligible.

We will construct an adversary APrivK attacking ΠEnc:

– APrivK is given the security parameter 1n and runs A on input 1n to obtain two
messages (m0,m1). APrivK then outputs these same messages.

– APrivK is given a ciphertext c := Enck∗(mb)) = b, the encryption of one of the
messages.

– APrivK runs the key-exchange protocol Π itself, playing both roles, to generate a
transcript trans and a key k (key which it will ignore, only the transcript is needed).

– APrivK runs A(trans, c), which returns a bit b. APrivK outputs this same bit.

In the indistinguishable encryptions in the presence of an eavesdropper game PrivKeav
APrivK,ΠEnc

(n)
(recall from Lecture 3) , the key k∗ used to generate c us chosen uniformly and indepen-
dently of trans; A is given an encryption of mi whenever APrivK is; and APrivK outputs as
guess whatever is output by A. Hence,

Pr[PrivKeav
APrivK,ΠEnc

(n) = 1] = Pr[A(trans, c← Enck∗(mb)) = b].

By assumption ΠEnc achieves indistinguishable encryptions in the presence of an eaves-
dropper, so the following holds for some negligible function negl2:

Pr[PrivKeav
APrivK,ΠEnc

(n) = 1] ≤ 1

2
+ negl2(n).

This implies equation (2) and completes the proof.

2. Discrete Logarithms (Baby-Step/Giant-Step Algorithm)

• Prove that the Baby-Step/Giant-Step algorithm computes the discrete logarithm x given
gx = h mod p.

Solution: Let’s briefly recall how the algorithm works over the concrete case G = Z∗p,
where p is a prime. Let t = b

√
p− 1c be the floor of the square root of the order of

the group. The algorithm first computes a list of Giant Steps (g0, gt, . . . , gbp−1/tc·t) and
another of Baby Steps (g · g1, . . . , h · gt); and then looks for a match between the two.
That is, some i, k such that:

g · gi = gk·t

It then returns x := (k · t− i) mod p− 1.

First, to show that such a collision is always found, note that any x ∈ {0, . . . , p− 1} can
be written as xj = k · t − i mod p − 1 for k ∈ {0, . . . , b(p − 1)/tc} and i ∈ {1, . . . , t}.
Now all we need to show is that gx is indeed equal to h. To do this, we can just multiply
by g−i on both sides of the equality above getting:

h = gk·t · g−i = gk·t−i = g(k·t−i) mod p−1 = gx

where the penultimate equality follows from Corollary 8.15, from Lecture 9.

• How are the fact that g is a generator of Z∗p and the uniqueness of the output of the
algorithm related? When is the output not unique?
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Solution: For generality, let’s not assume p is prime and write q = φ(p) for the order
of the group (note that if p is a prime, then all elements of Z∗p are generators - we need
p composite to allow for non-trivial non-generators in the group). If g is a generator, we
can write the elements in the group as {g0, g1, g2, . . . , gq−1}. In particular, this means
that gi 6= gj for distinct i, j ∈ {0, . . . , q − 1}. Now, the output x of the algorithm is a
number in {0, . . . , q− 1}, so for any other i ∈ {0, . . . , q− 1} we ave gi 6= gx, meaning the
output is unique.

If the output is not unique, there exist distinct x1, x2 such that gx1 = gx2 . However, this
implies:

1 = gx2−x1 mod q

which, in particular, means that the order of g is at most x2 − x1 < q (since x1 6= x2),
and therefore g is not a generator. Moreover, if g is not a generator, its order o(g) has
to be at most q/2 (since this has to divide the order of the group q), which implies that
for any i, gi = g(i+ o(g)) mod q and i 6= i+ o(g). Thus the discrete logarithm problem
has a non-unique output if and only if g is not a generator.

However, this does not automatically imply that the algorithm will necessarily have a
non-unique output, i.e. that it will find all the xj such that gxj = h. To see that this is
the case, similarly as in the first part, note that any xj ∈ {0, . . . , q − 1} can be written
as xj = kj · t − ij mod q − 1 for kj ∈ {0, . . . , bq/tc} and ij ∈ {1, . . . , t}. This implies
gkj ·t = h · gij and so the algorithm will output xj .

• Compute the discrete logarithm for gx = h mod p with g = 3, h = 13 and p = 29 using
the Baby-Step/Giant-Step algorithm.

Solution: The order of the group Z∗p is φ(29) = 29 − 1 = 28, since 29 is prime. Thus,

define t := b
√

28c = 5. We first compute the list of Giant Steps:

(g0, gt, . . . , gbp−1/tc·t) =

= (30 mod 29, 35 mod 29, 310 mod 29, 315 mod 29, 320 mod 29, 325mod29)

= (1, 11, 5, 26, 25, 14)

then the list of Baby Steps:

(h · g1, . . . , h · gt) =

= (13 · 31 mod 29, 13 · 32 mod 29, 13 · 33 mod 29, 13 · 34 mod 29, 13 · 35 mod 29)

= (10, 1, 3, 9, 27)

We can see that there is a match, namely g0 = 1 = h·g2, i.e. for k = 0, i = 2 according to
the notation from the first part. Thus x = (0− 2) mod 28 = 26 mod 28 (note that we
need to compute this modulo the order of the group, not p). Indeed 326 = 13 mod 29.

3. Group generators

• Provide a proof for the following statement: If there exists a generator modulo n, then
there are ϕ(ϕ(n)) many of them.
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Solution: Assume Z∗n is cyclic and g a generator. We show that h = gx mod n with
x ∈ Zφ(n) is a generator of Z∗n if and only if x ∈ Z∗φ(n):

Since g is a generator, we have 〈h〉 = Z∗n if and only if g ∈ 〈h〉, i.e., there exists y ∈ Zφ(n)

such that g = hy = gxy = gxy mod φ(n) mod n. In the lecture we have seen that for any
generator g of a group G of order m, the map Zm → G, x 7→ gx is an isomorphism.
Using this result, we get that h = gx mod n is a generator of Z∗n if and only if there
exists y ∈ Zφ(n) such that 1 = xy mod φ(n). The latter holds if and only if x is invertible
modulo φ(n), which is equivalent to x ∈ Z∗φ(n), as claimed.

Thus, the set of generators of Z∗n is {gx | x ∈ Z∗φ(n)}. Since Z∗φ(n) consists of all elements

in Zφ(n) which are coprime to φ(n), we have |Z∗φ(n)| = φ(φ(n)), hence (using the fact

that Zm → G, x 7→ gx is an isomorphism) we can deduce that there are exactly φ(φ(n))
distinct generators of Z∗n.
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