Modern Cryptography December 19, 2018

Solutions to Homework 9

Lecturer: Daniel Slamanig, TA: Karen Klein

1. Groups

o Let N € Z>¢ and let G = Zy. Prove that G is a group under the operation a - b =
(a 4+ b) mod N.

Solution: For N = 0, Zy is the empty set, which is not a group by definition. Now,
assume N > 0, hence, Zy is not empty. To prove that G = Zy is a group we have to
show that all four properties are satisfied. Let a,b,c € Zy.
— Closure: Obviously, a-b = [a+ bmod N] € Zy.
— Identity: The identity element is 0 € Zy, since a-0 = [a+0 mod N] = [a mod N] =a
and 0-a = [0+ a mod N| = [a mod N] = a.
— Inverse: Define the inverse (—a) of a as (—a) := [~amod N] = N —a € Zy.
It holds: a-(—a) = [a+ N —amod N] = [0mod N] =0 € Zy and (—a) -a =
[N —a+amod N| =[0mod N| =0 € Zy.
— Associativity: (a-b) - ¢ = [[a + bmod N] 4+ c¢mod N| = [[a + bmod N| + (a + b —
[a + b mod NJ]) + ¢mod N] = [a + b+ ¢ mod N| and similarly for a - (b- ¢). Note,
that we used the fact that (a + b — [a + b mod N]) is a multiple of N.

O

e List the elements of Zj); what is its order?; What are the orders of 3 and 97; Is Zj,
cyclic?
Solution: Zj, = {x € Zjo | ged(x,10) = 1} = {1,3,7,9}; thus, |Z;,] = 4. Recall,
ord(x) := min{i € Z-g | 2 = 1 mod 10}. We have 3' = 3 mod 10, 3> = 9 mod 10,
33 = 27 = 7 mod 10, 3* = 21 = 1 mod 10; hence, ord(3) = 4. Similarly, we get ord(9) = 2
by computing 9! = 9 mod 10, 92 = 81 = 1 mod 10. Recall that a group G is cyclic if
there is an element g € G such that ord(g) = |G|. Above we saw that ord(3) = 4 = |Z],|,
thus, Z7j, is cyclic and 3 is a generator of Zj,. U

e Does the set Zj5 \ {0} form a group under multiplication? If not, why?

Solution: (Z;5\ {0}, -) is not a group, since, e.g., 3,5 € Z15\{0} but 3-5 = [0 mod 15| ¢
Z15 \ {0}, hence the closure property is not satisfied. Alternatively, one could also argue
that 3 doesn’t have an inverse in Zi5 \ {0}. O

2. Extended Euclidean Algorithm:

e [B.1 in book, 2nd edition] Prove correctness of the extended Euclidean algorithm
(extGCD).
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Algorithm 1 extGCD

1
2
3
4:
5
6

: Input: a,b € N
: Output: (d, X,Y) with d = gcd(a,b) and Xa+Yb=d
: if bla then return (b,0,1)
else compute ¢,r € Nwitha=¢b+rand 0 <r <b
(d,X,Y) := extGCD(b, r)
return (d,Y, X —Yq)

Solution: Recall the extended Euclidean algorithm extGCD from the book [B.10]:

We prove correctness by an inductive argument (over the number of rounds). For the
base case, let bla. Then gcd(a,b) = b = Oa + 1b, hence correctness is satisfied for
the output extGCD(a,b) = (b,0,1). Now, consider the case b 1 a. Let ¢,r € N with
a=gb+rand 0 <r <b. Assume the output (d, X,Y) = extGCD(b,r) of the previous
round is correct. Then d = gecd(b,r) = ged(b,a — gb) = gecd(b,a) = ged(a,b) and
Ya+ (X —Yqb=Xb+Y(a—qgb) = Xb+ Yr =d, as required.

You can prove ged(b, a — gb) = ged(b, a) more formally as follows. Let d = ged(b, a — gb)
and d’ = gcd(b, a). By definition, d|b and d|(a — gb), hence b = kid and a — qb = kad for
some ki, ko € Z, which implies a = (k2 + gk1)d. Thus, d divides a as well as b and it
follows d < d’. On the other hand, similarly to above, b = kjd' and a = kid’ for some
ki, kb € Z implies a — qb = (kb — gk!)d’, hence d’ divides b as well as a — ¢gb, and we can
conclude d' < d. Tt follows that d = d'. O

Use the extGCD to compute X, Y for a = 2498 and b = 8712. Illustrate all steps.

Solution: It holds bt a, so we compute gy = 0, 79 = 2498 such that 2498 = ¢(8712 + ry.
It holds 7 t b, so we compute g; = 3, r; = 1218 such that 8712 = ¢12598 + r;.

It holds r1 t 79, so we compute g = 2, 79 = 62 such that 2498 = ¢21218 4 r5.

It holds 72 t 71, so we compute g3 = 19, r3 = 40 such that 1218 = ¢362 + r3.

It holds r3 t 2, so we compute g4 = 1, r4 = 22 such that 62 = 440 + r4.

It holds r4 1 73, so we compute g5 = 1, 5 = 18 such that 40 = ¢522 + 5.

It holds 75 t 4, so we compute g5 = 1, 76 = 4 such that 22 = ¢518 + r¢.

It holds rg 1 15, so we compute gy = 4, r7 = 2 such that 18 = ¢4 + r7.

It holds r7 | 76, so (d, X7,Y7) = extGCD(r¢,r7) = (r7,0,1) = (2,0, 1).

Thus, we get (d, Xg, Ys) = (d, Y7, X7 — Y7¢7) = (2,1 —4)
Thus, we get (d, X5,Ys5) = (d,Ys, X¢ — Yoq6) = (2, —4,5).
Thus, we get (d, X4, Y1) = (d, Y5, X5 — Y5q5) = (2, 5, 9).
Thus, we get (d X3, 3) (d Yy, X4 — 3/4(]4) = (2, -9, 14)
Thus, we get (d, Xo,Y2) = (d, Y3, X3 — Y3q3) = (2,14, —275).
Thus, we get (d, X1,Y1) = (d, Y2, Xo — Yaqo) = (2, —275,564).
Thus, we get (d, Xo, Yy) = (d, Y1, X1 — Yiq1) = (2,564, —1967).

Finally, we get (d,X,Y) = (d,Yp, X0 — Yoqo) = (2,—1967,564) and indeed it holds
—1967 - 2498 + 564 - 8712 = 2.
]

e Discuss how extGCD can be used to compute the multiplicative inverse.
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Solution: To compute the multiplicative inverse of @ mod NN, note that a € Zy is
invertible if and only if gcd(a, N) = 1. Thus, we can use extGCD to compute X,Y € Z
such that Xa + YN = 1. Since 1 = Xa+ YN = Xamod N we can deduce that
[X mod N] € Zy is the inverse of a in Z},. O

3. Euler phi function

e Let p be prime and e > 1 an integer. Show that ¢(p¢) = p*~(p — 1).

Solution: Recall,

p(p°) := |Zpe| = {z € Zype | ged(,p°) = 1}| = [{z € Zype | ged(z,p) = 1}].

Using division with remainder, we get Zye = {kp+7 |0 < k < p®~ %, 0 <r < p}. It holds
ged(kp + r,p) = ged(r, p) and since p is a prime, we have ged(r,p) =1 for all 0 < r < p.
Hence, Zye = {kp+7r|0<k < pH 0<r<p}and p(p°) =pt(p—1). O

e Let p, q be relatively prime. Show that ¢(pg) = ¢(p) - ¢(q).

Solution: For any x € Z,,, by definition of gcd we have ged(z,pg) = 1 if and only
if ged(z,p) = 1 and ged(z,q) = 1, ie., [r mod p] € Z; and [z mod ¢] € Z;. Consider
the following map f : Z;, — Z5 x Zj, x + ([z mod p|, [x mod ¢]). We show that f is
bijective. For surjectivity, let (a,b) be an arbitrary element in Zy, % Zy. Since p and q are
coprime, there exist X, Y € Nsuch that Xp+Y ¢ = 1 and in particular Y¢ = 1 mod p and
Xp=1mod q. It follows f([aY ¢+bXp mod pq]) = ([aY ¢ mod p], [bXp mod ¢|) = (a,b),
which proves surjectivity. For injectivity, let x,2" € Z, such that f(z) = f(z'). Hence,
x = 2’modp and x = 2’ mod q. It follows p|(z — 2') and ¢|(z — '), and since p
and ¢ are coprime we can conclude pg|(z — 2’) as follows. Let ki, ko € Z such that
(x —2') = kip = kog, and X,Y as above, i.e., Xp + Yq = 1. Multiplying this with
(x —2') gives x — 2/ = (x — ") Xp+ (v — 2')Yq = koqXp + k1pYq = (k2 X + k1Y )pq.
Thus, (pg)|(x — 2’) and hence x = 2’ mod pg. This shows that f is a bijection between
Zypy and Zy, X Zy, which proves that both sets have the same cardinality, i.e., o(pq) =

|Zpgl = 12 x 23| = ¢(p)(9)- D
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