
Modern Cryptography December 19, 2018

Solutions to Homework 9

Lecturer: Daniel Slamanig, TA: Karen Klein

1. Groups

• Let N ∈ Z≥0 and let G = ZN . Prove that G is a group under the operation a · b =
(a + b) mod N .

Solution: For N = 0, ZN is the empty set, which is not a group by definition. Now,
assume N > 0, hence, ZN is not empty. To prove that G = ZN is a group we have to
show that all four properties are satisfied. Let a, b, c ∈ ZN .

– Closure: Obviously, a · b = [a + b mod N ] ∈ ZN .

– Identity: The identity element is 0 ∈ ZN , since a·0 = [a+0 mod N ] = [a mod N ] = a
and 0 · a = [0 + a mod N ] = [a mod N ] = a.

– Inverse: Define the inverse (−a) of a as (−a) := [−a mod N ] = N − a ∈ ZN .
It holds: a · (−a) = [a + N − a mod N ] = [0 mod N ] = 0 ∈ ZN and (−a) · a =
[N − a + a mod N ] = [0 mod N ] = 0 ∈ ZN .

– Associativity: (a · b) · c = [[a + b mod N ] + c mod N ] = [[a + b mod N ] + (a + b −
[a + b mod N ]) + c mod N ] = [a + b + c mod N ] and similarly for a · (b · c). Note,
that we used the fact that (a + b− [a + b mod N ]) is a multiple of N .

• List the elements of Z∗10; what is its order?; What are the orders of 3 and 9?; Is Z∗10
cyclic?

Solution: Z∗10 = {x ∈ Z10 | gcd(x, 10) = 1} = {1, 3, 7, 9}; thus, |Z∗10| = 4. Recall,
ord(x) := min{i ∈ Z>0 | xi = 1 mod 10}. We have 31 = 3 mod 10, 32 = 9 mod 10,
33 = 27 = 7 mod 10, 34 = 21 = 1 mod 10; hence, ord(3) = 4. Similarly, we get ord(9) = 2
by computing 91 = 9 mod 10, 92 = 81 = 1 mod 10. Recall that a group G is cyclic if
there is an element g ∈ G such that ord(g) = |G|. Above we saw that ord(3) = 4 = |Z∗10|,
thus, Z∗10 is cyclic and 3 is a generator of Z∗10.

• Does the set Z15 \ {0} form a group under multiplication? If not, why?

Solution: (Z15\{0}, ·) is not a group, since, e.g., 3, 5 ∈ Z15\{0} but 3 ·5 = [0 mod 15] 6∈
Z15 \ {0}, hence the closure property is not satisfied. Alternatively, one could also argue
that 3 doesn’t have an inverse in Z15 \ {0}.

2. Extended Euclidean Algorithm:

• [B.1 in book, 2nd edition] Prove correctness of the extended Euclidean algorithm
(extGCD).
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Algorithm 1 extGCD

1: Input: a, b ∈ N
2: Output: (d,X, Y ) with d = gcd(a, b) and Xa + Y b = d
3: if b|a then return (b, 0, 1)
4: else compute q, r ∈ N with a = qb + r and 0 < r < b
5: (d,X, Y ) := extGCD(b, r)
6: return (d, Y,X − Y q)

Solution: Recall the extended Euclidean algorithm extGCD from the book [B.10]:

We prove correctness by an inductive argument (over the number of rounds). For the
base case, let b|a. Then gcd(a, b) = b = 0a + 1b, hence correctness is satisfied for
the output extGCD(a, b) = (b, 0, 1). Now, consider the case b - a. Let q, r ∈ N with
a = qb + r and 0 < r < b. Assume the output (d,X, Y ) = extGCD(b, r) of the previous
round is correct. Then d = gcd(b, r) = gcd(b, a − qb) = gcd(b, a) = gcd(a, b) and
Y a + (X − Y q)b = Xb + Y (a− qb) = Xb + Y r = d, as required.
You can prove gcd(b, a− qb) = gcd(b, a) more formally as follows. Let d = gcd(b, a− qb)
and d′ = gcd(b, a). By definition, d|b and d|(a− qb), hence b = k1d and a− qb = k2d for
some k1, k2 ∈ Z, which implies a = (k2 + qk1)d. Thus, d divides a as well as b and it
follows d ≤ d′. On the other hand, similarly to above, b = k′1d

′ and a = k′2d
′ for some

k′1, k
′
2 ∈ Z implies a− qb = (k′2 − qk′1)d

′, hence d′ divides b as well as a− qb, and we can
conclude d′ ≤ d. It follows that d = d′.

• Use the extGCD to compute X, Y for a = 2498 and b = 8712. Illustrate all steps.

Solution: It holds b - a, so we compute q0 = 0, r0 = 2498 such that 2498 = q08712 + r0.
It holds r0 - b, so we compute q1 = 3, r1 = 1218 such that 8712 = q12598 + r1.
It holds r1 - r0, so we compute q2 = 2, r2 = 62 such that 2498 = q21218 + r2.
It holds r2 - r1, so we compute q3 = 19, r3 = 40 such that 1218 = q362 + r3.
It holds r3 - r2, so we compute q4 = 1, r4 = 22 such that 62 = q440 + r4.
It holds r4 - r3, so we compute q5 = 1, r5 = 18 such that 40 = q522 + r5.
It holds r5 - r4, so we compute q6 = 1, r6 = 4 such that 22 = q618 + r6.
It holds r6 - r5, so we compute q7 = 4, r7 = 2 such that 18 = q74 + r7.
It holds r7 | r6, so (d,X7, Y7) = extGCD(r6, r7) = (r7, 0, 1) = (2, 0, 1).
Thus, we get (d,X6, Y6) = (d, Y7, X7 − Y7q7) = (2, 1,−4).
Thus, we get (d,X5, Y5) = (d, Y6, X6 − Y6q6) = (2,−4, 5).
Thus, we get (d,X4, Y4) = (d, Y5, X5 − Y5q5) = (2, 5,−9).
Thus, we get (d,X3, Y3) = (d, Y4, X4 − Y4q4) = (2,−9, 14).
Thus, we get (d,X2, Y2) = (d, Y3, X3 − Y3q3) = (2, 14,−275).
Thus, we get (d,X1, Y1) = (d, Y2, X2 − Y2q2) = (2,−275, 564).
Thus, we get (d,X0, Y0) = (d, Y1, X1 − Y1q1) = (2, 564,−1967).
Finally, we get (d,X, Y ) = (d, Y0, X0 − Y0q0) = (2,−1967, 564) and indeed it holds
−1967 · 2498 + 564 · 8712 = 2.

• Discuss how extGCD can be used to compute the multiplicative inverse.
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Solution: To compute the multiplicative inverse of a mod N , note that a ∈ ZN is
invertible if and only if gcd(a,N) = 1. Thus, we can use extGCD to compute X,Y ∈ Z
such that Xa + Y N = 1. Since 1 = Xa + Y N = Xa mod N we can deduce that
[X mod N ] ∈ ZN is the inverse of a in Z∗N .

3. Euler phi function

• Let p be prime and e ≥ 1 an integer. Show that ϕ(pe) = pe−1(p− 1).

Solution: Recall,

ϕ(pe) := |Z∗pe | = |{x ∈ Zpe | gcd(x, pe) = 1}| = |{x ∈ Zpe | gcd(x, p) = 1}|.

Using division with remainder, we get Zpe = {kp+r | 0 ≤ k < pe−1, 0 ≤ r < p}. It holds
gcd(kp + r, p) = gcd(r, p) and since p is a prime, we have gcd(r, p) = 1 for all 0 < r < p.
Hence, Z∗pe = {kp + r | 0 ≤ k < pe−1, 0 < r < p} and ϕ(pe) = pe−1(p− 1).

• Let p, q be relatively prime. Show that ϕ(pq) = ϕ(p) · ϕ(q).

Solution: For any x ∈ Zpq, by definition of gcd we have gcd(x, pq) = 1 if and only
if gcd(x, p) = 1 and gcd(x, q) = 1, i.e., [x mod p] ∈ Z∗p and [x mod q] ∈ Z∗q . Consider
the following map f : Z∗pq → Z∗p × Z∗q , x 7→ ([x mod p], [x mod q]). We show that f is
bijective. For surjectivity, let (a, b) be an arbitrary element in Z∗p×Z∗q . Since p and q are
coprime, there exist X,Y ∈ N such that Xp+Y q = 1 and in particular Y q = 1 mod p and
Xp = 1 mod q. It follows f([aY q+bXp mod pq]) = ([aY q mod p], [bXp mod q]) = (a, b),
which proves surjectivity. For injectivity, let x, x′ ∈ Z∗pq such that f(x) = f(x′). Hence,
x = x′ mod p and x = x′ mod q. It follows p|(x − x′) and q|(x − x′), and since p
and q are coprime we can conclude pq|(x − x′) as follows. Let k1, k2 ∈ Z such that
(x − x′) = k1p = k2q, and X,Y as above, i.e., Xp + Y q = 1. Multiplying this with
(x − x′) gives x − x′ = (x − x′)Xp + (x − x′)Y q = k2qXp + k1pY q = (k2X + k1Y )pq.
Thus, (pq)|(x− x′) and hence x = x′ mod pq. This shows that f is a bijection between
Z∗pq and Z∗p × Z∗q , which proves that both sets have the same cardinality, i.e., ϕ(pq) =
|Z∗pq| = |Z∗p × Z∗q | = ϕ(p)ϕ(q).

PS9-3


