
Modern Cryptography January 25, 2019

Solutions to Homework 13

Lecturer: Daniel Slamanig, TA: Karen Klein

1. Hash-and-Sign

• (3 Points) Provide a formal proof of security of the hash-and-sign paradigm, i.e. prove
the following theorem:

Theorem 1 If Σ is a secure signature scheme for messages of length k and Γ is collision
resistant, then Σ′ is a secure signature scheme (for arbitrary-length messages).

Solution: Let A′ be an arbitrary PPT adversary against EUF-CMA security of Σ′ =
(Gen′,Sign′,Vrfy′). Define Collision as the event that throughout a run of the security
game SigForgeeuf−cma

A′,Σ′ (n) the attacker A′ queries a signature for a message mi such that
Hs(mi) = Hs(m∗). Then we can bound the success probability of A′ as

Pr[A′ wins] = Pr[A′ wins ∧ Collision] + Pr[A′ wins ∧ ¬Collision]

We first bound the probability that A′ wins and Collision happens. To this aim, we
construct a PPT algorithm AH against the collision-resistance (see definition 5.1 and
5.2 from the first part of the course) of the hash function family Γ = (GenH , H) that
runs A′ as a subroutine. First, AH gets a challenge s ← GenH(1n) and runs Gen(1n)
to receive a key pair (pk, sk). It sets pk′ = (pk, s) and sk′ = (sk, s). Then it sends
pk′ to A′. Since AH knows sk′, it can answer all signature queries mi of A′ just by
running the algorithm Sign′sk′(mi). Furthermore, AH stores all queries mi together with
the corresponding hash values Hs(mi) in a list Q. When A′ outputs a forgery (m∗, σ∗),
then AH computes Hs(m∗) and searches for a pair (mi, H

s(mi) in the list Q such that
Hs(mi) = Hs(m∗). If it finds such a pair, AH outputs (m∗,mi), otherwise it outputs
an arbitrary pair (m1,m2). Clearly, if Collision happens then AH finds mi such that
Hs(mi) = Hs(m∗) and, furthermore, if A′ is successful it also holds m∗ 6∈ Q, thus,
m∗ 6= mi and AH wins. By collision resistance of Γ it follows

negl1(n) ≥ Pr[Hash− collAH,Γ(n) = 1] ≥ Pr[A′ wins ∧ Collision].

In the case that Collision does not happen we reduce the security of Σ′ to the security of
the fixed-length signature scheme Σ. We construct an adversary A against the security
of Σ as follows: Given a public key pk, A computes s ← GenH(1n) and sends pk′ =
(pk, s) to A′. Whenever A′ asks for a signature on a message mi, A computes Hs(mi),
queries σi ← Signsk(H

s(mi)) and forwards σi to A′. Clearly, this perfectly simulates
the Sign′sk′ oracle. As soon as A′ outputs a pair (m∗, σ∗), A outputs (Hs(m∗), σ∗). If
Collision does not happen then Hs(m∗) 6= Hs(mi) for all previously queried messages
mi. If furthermore A′ succeeds, i.e., (m∗, σ∗) is a valid forgery with respect to Σ′, then
(Hs(m∗), σ∗) is a valid forgery with respect to Σ since by definition

1 = Vrfy′pk′(m
∗, σ∗) = Vrfypk(Hs(m∗), σ∗).

PS13-1



Security of Σ now implies

negl2(n) ≥ Pr[A wins] ≥ Pr[A′ wins ∧ ¬Collision].

Combining the two results, we get

Pr[A′ wins] ≤ negl1(n) + negl2(n) =: negl(n)

which proves security of Σ′.

2. RSA signatures

• [12.3 in book, 2nd edition] (2 Points) In the lecture we have seen an attack on the
textbook RSA signature scheme in which an attacker forges a signature on an arbitrary
message using two signing queries. Show how an attacker can forge a signature on an
arbitrary message using a single signing query.

Solution: Suppose an attacker A wants to forge a signature on m ∈ Z∗N . To this aim,
A sets m′ := [m−1 mod N ] and queries a signature on m′. Receiving σ′ ← Signsk(m′) =
[(m′)d mod N ], the attacker computes σ := [(σ′)−1 mod N ] and outputs (m,σ). It holds

σe = (σ′)−e = (m′)−ed = (m)ed = m mod N.

Thus, (m,σ) is a valid forgery.

3. DSA Signatures

• [12.7 in book, 2nd edition] (2 Points) Consider a variant of DSA in which the
message space is Zq and H is omitted. (So the second component of the signature is
now s := k−1 · (m+ xr) mod q.) Show that this variant is not secure.

Solution: A possible no-message attack arises from setting r = F (y), thus, implicitly
setting k = x. Since the secret key x is of course unknown to the attacker but it has to
output s = k−1(m+ rx) = x−1(m+ rx) mod q, the idea is now to set m in such a way
that x cancels out in the expression and s only depends on known parameters. Setting
m = 0 achieves this goal and it is easy to check that (m, (r, s)) = (0, (F (y), F (y))) is a
valid forgery:

F (gms
−1
yrs
−1

) = F (g0y1) = F (y) = r.

More general, one can set r := F (gayb), i.e., k := a+ bx mod q, and m := rab−1 mod q
to get

s := k−1(m+rx) = (a+bx)−1(m+rx) = (a+bx)−1(rab−1+rx) = (a+bx)−1rb−1(a+bx) = rb−1.

By construction, (m, (r, s)) = (rab−1, (F (gayb), F (gayb) · b−1)) is a valid forgery.

4. One-time signatures

• (1 Point) Write down the experiment for existential unfogeability under a one-time
non-adaptive chosen message attack (EUF-1-naCMA security).

PS13-2



Solution: We define the experiment SigForgeEUF−1−naCMA
A,Π between an adversary A and

a signature scheme Π = (Gen,Sign,Vrfy) as follows:

– On input only the security parameter 1n (and possibly some further public parame-
ters, e.g., specifying the message space), A outputs a single message m he wants to
get a signature for.

– Keys pk, sk ← Gen(1n) are chosen and a signature σ ← Signsk(m) is computed. A
receives pk and σ.

– A outputs a forgery (m∗, σ∗).

– The output of the experiment is 1 if and only if m 6= m∗ and Vrfypk(m∗, σ∗) = 1.

• (2 Points) For the one-time signatures under the discrete logarithm problem from the
lecture (slide 24) show the following theorem:

Theorem 2 If the discrete-logarithm problem is hard relative to G, then the signature
scheme is EUF-1-naCMA secure.

Solution: Let A be an arbitrary PPT adversary against the signature scheme. We
construct an algorithm A′ for the discrete logarithm as follows: A′ gets as input a tuple
(G, q, g, gz), where (G, q, g) ← G(1n) and z ← Zq uniformly random. Running A on
public parameters (G, q, g), A′ receives a message m for which it needs to output a
signature. A′ chooses σ ← Zq uniformly at random and sets h := gz, i.e., implicitly
z = x, and c := gmhσ. It send pk := (h, c) and σ to A. By construction, σ is a valid
signature for m with respect to the public key pk := (h, c). G, q, g and h are chosen
exactly as in the real game. If x 6= 0, then for any m the distribution of c := gm+xσ

with σ ← Zq is identical to the distribution of creal := gy with y ← Zq in the real game.
In both cases, σ is uniquely determined given c, h and m. Since x = 0 happens with
negligible probability 1/q, the view of A when given pk = (c, h) and σ is computational
indistinguishable from its view in a real execution of SigForgeEUF−1−naCMA

A,Π . When A
outputs a forgery (m∗, σ∗), A′ first checks m 6= m∗ and σ 6= σ∗. If A is successful,
this is always true and thus, in this case, A′ outputs z′ := (m −m∗)(σ − σ∗)−1 mod q.
Otherwise A′ outputs z′ ← Zq uniformly at random. If A succeeds and outputs a valid
forgery, then

gm
∗+zσ∗ = gm

∗
hσ
∗

= c = gmhσ = gm+zσ.

This implies m∗ + zσ∗ = m+ zσ, hence z = (m−m∗)(σ∗ − σ)−1 mod q. Thus, if x 6= 0
and A succeeds, then A′ solves the discrete logarithm problem. Assuming the hardness
of the discrete logarithm problem relative to G it follows

Pr[A wins] = Pr[A wins ∧ x 6= 0] + Pr[A wins ∧ x = 0]

≤ Pr[A′ solves DLog] + 1/q ≤ negl(n).

This proves EUF-1-naCMA-security of the scheme.

PS13-3


