Solutions to Homework 13

Lecturer: Daniel Slamanig, TA: Karen Klein

- 1. Hash-and-Sign
 - (3 Points) Provide a formal proof of security of the hash-and-sign paradigm, i.e. prove the following theorem:

Theorem 1 If Σ is a secure signature scheme for messages of length k and Γ is collision resistant, then Σ' is a secure signature scheme (for arbitrary-length messages).

Solution: Let \mathcal{A}' be an arbitrary PPT adversary against EUF-CMA security of $\Sigma' = (\text{Gen}', \text{Sign}', \text{Vrfy}')$. Define Collision as the event that throughout a run of the security game SigForge $_{\mathcal{A}', \Sigma'}^{\text{euf}-\text{cma}}(n)$ the attacker \mathcal{A}' queries a signature for a message m_i such that $H^s(m_i) = H^s(m^*)$. Then we can bound the success probability of \mathcal{A}' as

 $\mathsf{Pr}[\mathcal{A}' \text{ wins}] = \mathsf{Pr}[\mathcal{A}' \text{ wins } \land \text{ Collision}] + \mathsf{Pr}[\mathcal{A}' \text{ wins } \land \neg \text{Collision}]$

We first bound the probability that \mathcal{A}' wins and Collision happens. To this aim, we construct a PPT algorithm \mathcal{A}^H against the collision-resistance (see definition 5.1 and 5.2 from the first part of the course) of the hash function family $\Gamma = (\text{Gen}_H, H)$ that runs \mathcal{A}' as a subroutine. First, \mathcal{A}^H gets a challenge $s \leftarrow \text{Gen}_H(1^n)$ and runs $\text{Gen}(1^n)$ to receive a key pair (pk, sk). It sets pk' = (pk, s) and sk' = (sk, s). Then it sends pk' to \mathcal{A}' . Since \mathcal{A}^H knows sk', it can answer all signature queries m_i of \mathcal{A}' just by running the algorithm $\text{Sign}'_{sk'}(m_i)$. Furthermore, \mathcal{A}^H stores all queries m_i together with the corresponding hash values $H^s(m_i)$ in a list \mathcal{Q} . When \mathcal{A}' outputs a forgery (m^*, σ^*) , then \mathcal{A}^H computes $H^s(m^*)$ and searches for a pair $(m_i, H^s(m_i))$ in the list \mathcal{Q} such that $H^s(m_i) = H^s(m^*)$. If it finds such a pair, \mathcal{A}^H outputs (m^*, m_i) , otherwise it outputs an arbitrary pair (m_1, m_2) . Clearly, if Collision happens then \mathcal{A}^H finds m_i such that $H^s(m_i) = H^s(m^*)$ and, furthermore, if \mathcal{A}' is successful it also holds $m^* \notin \mathcal{Q}$, thus, $m^* \neq m_i$ and \mathcal{A}^H wins. By collision resistance of Γ it follows

$$\operatorname{negl}_1(n) \geq \Pr[\operatorname{Hash} - \operatorname{coll}_{\mathcal{A}^{\mathsf{H}}, \Gamma}(\mathsf{n}) = 1] \geq \Pr[\mathcal{A}' \operatorname{wins} \land \operatorname{Collision}].$$

In the case that Collision does not happen we reduce the security of Σ' to the security of the fixed-length signature scheme Σ . We construct an adversary \mathcal{A} against the security of Σ as follows: Given a public key pk, \mathcal{A} computes $s \leftarrow \text{Gen}_H(1^n)$ and sends $\mathsf{pk}' =$ (pk, s) to \mathcal{A}' . Whenever \mathcal{A}' asks for a signature on a message m_i , \mathcal{A} computes $H^s(m_i)$, queries $\sigma_i \leftarrow \text{Sign}_{sk}(H^s(m_i))$ and forwards σ_i to \mathcal{A}' . Clearly, this perfectly simulates the $\text{Sign}'_{\mathsf{sk}'}$ oracle. As soon as \mathcal{A}' outputs a pair (m^*, σ^*) , \mathcal{A} outputs $(H^s(m^*), \sigma^*)$. If Collision does not happen then $H^s(m^*) \neq H^s(m_i)$ for all previously queried messages m_i . If furthermore \mathcal{A}' succeeds, i.e., (m^*, σ^*) is a valid forgery with respect to Σ' , then $(H^s(m^*), \sigma^*)$ is a valid forgery with respect to Σ since by definition

$$1 = \operatorname{Vrfy}_{\mathsf{pk}'}(m^*, \sigma^*) = \operatorname{Vrfy}_{\mathsf{pk}}(H^s(m^*), \sigma^*).$$

Security of Σ now implies

 $\mathsf{negl}_2(n) \ge \mathsf{Pr}[\mathcal{A} \text{ wins}] \ge \mathsf{Pr}[\mathcal{A}' \text{ wins } \land \neg \mathsf{Collision}].$

Combining the two results, we get

$$\Pr[\mathcal{A}' \text{ wins}] \leq \operatorname{\mathsf{negl}}_1(n) + \operatorname{\mathsf{negl}}_2(n) =: \operatorname{\mathsf{negl}}(n)$$

which proves security of Σ' .

2. RSA signatures

• [12.3 in book, 2nd edition] (2 Points) In the lecture we have seen an attack on the textbook RSA signature scheme in which an attacker forges a signature on an arbitrary message using two signing queries. Show how an attacker can forge a signature on an arbitrary message using a single signing query.

Solution: Suppose an attacker \mathcal{A} wants to forge a signature on $m \in \mathbb{Z}_N^*$. To this aim, \mathcal{A} sets $m' := [m^{-1} \mod N]$ and queries a signature on m'. Receiving $\sigma' \leftarrow \mathsf{Sign}_{\mathsf{sk}}(m') = [(m')^d \mod N]$, the attacker computes $\sigma := [(\sigma')^{-1} \mod N]$ and outputs (m, σ) . It holds

$$\sigma^e = (\sigma')^{-e} = (m')^{-ed} = (m)^{ed} = m \mod N.$$

Thus, (m, σ) is a valid forgery.

3. DSA Signatures

• [12.7 in book, 2nd edition] (2 Points) Consider a variant of DSA in which the message space is \mathbb{Z}_q and H is omitted. (So the second component of the signature is now $s := k^{-1} \cdot (m + xr) \mod q$.) Show that this variant is not secure.

Solution: A possible no-message attack arises from setting r = F(y), thus, implicitly setting k = x. Since the secret key x is of course unknown to the attacker but it has to output $s = k^{-1}(m + rx) = x^{-1}(m + rx) \mod q$, the idea is now to set m in such a way that x cancels out in the expression and s only depends on known parameters. Setting m = 0 achieves this goal and it is easy to check that (m, (r, s)) = (0, (F(y), F(y))) is a valid forgery:

$$F(g^{ms^{-1}}y^{rs^{-1}}) = F(g^0y^1) = F(y) = r$$

More general, one can set $r := F(g^a y^b)$, i.e., $k := a + bx \mod q$, and $m := rab^{-1} \mod q$ to get

$$s := k^{-1}(m + rx) = (a + bx)^{-1}(m + rx) = (a + bx)^{-1}(rab^{-1} + rx) = (a + bx)^{-1}rb^{-1}(a + bx) = rb^{-1}.$$

By construction, $(m, (r, s)) = (rab^{-1}, (F(g^a y^b), F(g^a y^b) \cdot b^{-1}))$ is a valid forgery.

4. One-time signatures

• (1 Point) Write down the experiment for existential unfogeability under a one-time non-adaptive chosen message attack (EUF-1-naCMA security).

Solution: We define the experiment $\mathsf{SigForge}_{\mathcal{A},\Pi}^{\mathsf{EUF}-1-\mathsf{naCMA}}$ between an adversary \mathcal{A} and a signature scheme $\Pi = (\mathsf{Gen}, \mathsf{Sign}, \mathsf{Vrfy})$ as follows:

- On input only the security parameter 1^n (and possibly some further public parameters, e.g., specifying the message space), \mathcal{A} outputs a single message m he wants to get a signature for.
- Keys $\mathsf{pk}, \mathsf{sk} \leftarrow \mathsf{Gen}(1^n)$ are chosen and a signature $\sigma \leftarrow \mathsf{Sign}_{\mathsf{sk}}(m)$ is computed. \mathcal{A} receives pk and σ .
- \mathcal{A} outputs a forgery (m^*, σ^*) .
- The output of the experiment is 1 if and only if $m \neq m^*$ and $Vrfy_{pk}(m^*, \sigma^*) = 1$.

• (2 Points) For the one-time signatures under the discrete logarithm problem from the lecture (slide 24) show the following theorem:

Theorem 2 If the discrete-logarithm problem is hard relative to \mathcal{G} , then the signature scheme is EUF-1-naCMA secure.

Solution: Let \mathcal{A} be an arbitrary PPT adversary against the signature scheme. We construct an algorithm \mathcal{A}' for the discrete logarithm as follows: \mathcal{A}' gets as input a tuple (G, q, g, g^z) , where $(G, q, g) \leftarrow \mathcal{G}(1^n)$ and $z \leftarrow \mathbb{Z}_q$ uniformly random. Running \mathcal{A} on public parameters (G, q, g), \mathcal{A}' receives a message m for which it needs to output a signature. \mathcal{A}' chooses $\sigma \leftarrow \mathbb{Z}_q$ uniformly at random and sets $h := g^z$, i.e., implicitly z = x, and $c := g^m h^{\sigma}$. It send $\mathsf{pk} := (h, c)$ and σ to \mathcal{A} . By construction, σ is a valid signature for m with respect to the public key $\mathsf{pk} := (h, c)$. G, q, g and h are chosen exactly as in the real game. If $x \neq 0$, then for any m the distribution of $c := g^{m+x\sigma}$ with $\sigma \leftarrow \mathbb{Z}_q$ is identical to the distribution of $c_{\text{real}} := g^y$ with $y \leftarrow \mathbb{Z}_q$ in the real game. In both cases, σ is uniquely determined given c, h and m. Since x = 0 happens with negligible probability 1/q, the view of \mathcal{A} when given $\mathsf{pk} = (c, h)$ and σ is computational indistinguishable from its view in a real execution of SigForge $_{\mathcal{A},\Pi}^{\mathsf{EUF-1-naCMA}}$. When \mathcal{A} outputs a forgery (m^*, σ^*) , \mathcal{A}' first checks $m \neq m^*$ and $\sigma \neq \sigma^*$. If \mathcal{A} is successful, this is always true and thus, in this case, \mathcal{A}' outputs $z' := (m - m^*)(\sigma - \sigma^*)^{-1} \mod q$. Otherwise \mathcal{A}' outputs $z' \leftarrow \mathbb{Z}_q$ uniformly at random. If \mathcal{A} succeeds and outputs a valid forgery, then

$$g^{m^*+z\sigma^*} = g^{m^*}h^{\sigma^*} = c = g^m h^\sigma = g^{m+z\sigma}.$$

This implies $m^* + z\sigma^* = m + z\sigma$, hence $z = (m - m^*)(\sigma^* - \sigma)^{-1} \mod q$. Thus, if $x \neq 0$ and \mathcal{A} succeeds, then \mathcal{A}' solves the discrete logarithm problem. Assuming the hardness of the discrete logarithm problem relative to \mathcal{G} it follows

$$\Pr[\mathcal{A} \text{ wins}] = \Pr[\mathcal{A} \text{ wins } \land x \neq 0] + \Pr[\mathcal{A} \text{ wins } \land x = 0]$$
$$\leq \Pr[\mathcal{A}' \text{ solves } \operatorname{DLog}] + 1/q \leq \operatorname{\mathsf{negl}}(n).$$

This proves EUF-1-naCMA-security of the scheme.

PS13-3