Modern Cryptography January 25, 2019

Solutions to Homework 13

Lecturer: Daniel Slamanig, TA: Karen Klein

1. Hash-and-Sign

e (3 Points) Provide a formal proof of security of the hash-and-sign paradigm, i.e. prove
the following theorem:

Theorem 1 IfY is a secure signature scheme for messages of length k and I is collision
resistant, then X' is a secure signature scheme (for arbitrary-length messages).

Solution: Let A’ be an arbitrary PPT adversary against EUF-CMA security of ¥/ =
(Gen’, Sign’, Vrfy'). Define Collision as the event that throughout a run of the security
game SigForgei{’,fg,C”‘a (n) the attacker A’ queries a signature for a message m; such that

H#*(m;) = H*(m*). Then we can bound the success probability of A" as
Pr[A’ wins] = Pr[A" wins A Collision] + Pr[A" wins A —Collision]

We first bound the probability that A’ wins and Collision happens. To this aim, we
construct a PPT algorithm A against the collision-resistance (see definition 5.1 and
5.2 from the first part of the course) of the hash function family I' = (Gengy, H) that
runs A’ as a subroutine. First, A7 gets a challenge s <~ Geny(1") and runs Gen(17")
to receive a key pair (pk,sk). It sets pk’ = (pk,s) and sk’ = (sk,s). Then it sends
pk’ to A’. Since A knows sk’, it can answer all signature queries m; of A’ just by
running the algorithm Sign;k,(mi). Furthermore, AX stores all queries m; together with
the corresponding hash values H*(m;) in a list Q. When A’ outputs a forgery (m*, o*),
then AY computes H*(m*) and searches for a pair (m;, H*(m;) in the list Q such that
H?®(m;) = H*(m*). If it finds such a pair, A outputs (m*, m;), otherwise it outputs
an arbitrary pair (my,ms). Clearly, if Collision happens then A finds m; such that
H#*(m;) = H*(m*) and, furthermore, if A’ is successful it also holds m* ¢ Q, thus,
m* # m; and A wins. By collision resistance of I' it follows

negly (n) > Pr[Hash — coll 41 r(n) = 1] > Pr[A" wins A Collision].

In the case that Collision does not happen we reduce the security of ¥’ to the security of
the fixed-length signature scheme Y. We construct an adversary A against the security
of ¥ as follows: Given a public key pk, A computes s < Geng(1") and sends pk’ =
(pk, s) to A’. Whenever A" asks for a signature on a message m;, A computes H*(m;),
queries o; < Signg,(H*(m;)) and forwards o; to A’. Clearly, this perfectly simulates
the Signl,, oracle. As soon as A’ outputs a pair (m*,o*), A outputs (H*(m*),o*). If
Collision does not happen then H*(m*) # H?®(m;) for all previously queried messages
m;. If furthermore A’ succeeds, i.e., (m*,c*) is a valid forgery with respect to X', then
(H*(m*),c*) is a valid forgery with respect to 3 since by definition

1= Vrfy:)k, (m*,0%) = Vrfy, (H*(m"),0").

PS13-1

Security of 3 now implies
negly(n) > Pr[A wins] > Pr[A’ wins A —Collision].
Combining the two results, we get
Pr[A" wins] < negl, (n) + negly(n) =: negl(n)
which proves security of Y.]

2. RSA signatures

e [12.3 in book, 2nd edition] (2 Points) In the lecture we have seen an attack on the
textbook RSA signature scheme in which an attacker forges a signature on an arbitrary
message using two signing queries. Show how an attacker can forge a signature on an
arbitrary message using a single signing query.

Solution: Suppose an attacker .4 wants to forge a signature on m € Z3;. To this aim,
A sets m’ := [m~! mod N| and queries a signature on m’. Receiving o’ < Signg (m/) =
[(m")% mod NI, the attacker computes ¢ := [(¢/)~! mod N] and outputs (m, o). It holds

0¢ = (/)¢ = (m)"% = (m)* = m mod N.
Thus, (m, o) is a valid forgery.]
3. DSA Signatures

e [12.7 in book, 2nd edition] (2 Points) Consider a variant of DSA in which the
message space is Z, and H is omitted. (So the second component of the signature is
now s := k=1 - (m + zr) mod ¢q.) Show that this variant is not secure.

Solution: A possible no-message attack arises from setting » = F(y), thus, implicitly
setting k = x. Since the secret key x is of course unknown to the attacker but it has to
output s = k=1 (m + rx) = 271 (m + rz) mod ¢, the idea is now to set m in such a way
that x cancels out in the expression and s only depends on known parameters. Setting
m = 0 achieves this goal and it is easy to check that (m, (r,s)) = (0, (F(y), F(y))) is a
valid forgery:
F(g™ 'y) = Fg’%") = Fy) =

More general, one can set r := F(g“yb), ie., k:=a+ brmod g, and m := rab~! mod ¢
to get

s:=k Y m+rz) = (a+bzx) L (mtrz) = (a+bzx) L (rab +rz) = (a+bz) b (a+bx) =
By construction, (m, (r,s)) = (rab=!, (F(g%y®), F(g%y®) - b~1)) is a valid forgery. [
4. One-time signatures

e (1 Point) Write down the experiment for existential unfogeability under a one-time
non-adaptive chosen message attack (EUF-1-naCMA security).

PS13-2

Solution: We define the experiment SigForgeiUHF_l_"aCMA between an adversary A and

a signature scheme IT = (Gen, Sign, Vrfy) as follows:

— On input only the security parameter 1" (and possibly some further public parame-
ters, e.g., specifying the message space), A outputs a single message m he wants to
get a signature for.

— Keys pk, sk < Gen(1"™) are chosen and a signature o <« Signg (m) is computed. A
receives pk and o.

— A outputs a forgery (m*,o*).
— The output of the experiment is 1 if and only if m # m* and Vrfy,, (m*,0*) = 1.
O

e (2 Points) For the one-time signatures under the discrete logarithm problem from the
lecture (slide 24) show the following theorem:

Theorem 2 If the discrete-logarithm problem is hard relative to G, then the signature
scheme is EUF-1-naCMA secure.

Solution: Let A be an arbitrary PPT adversary against the signature scheme. We
construct an algorithm A’ for the discrete logarithm as follows: A’ gets as input a tuple
(G,q,9,9%), where (G,q,g9) < G(1") and z < Z,; uniformly random. Running A on
public parameters (G, q,g), A’ receives a message m for which it needs to output a
signature. A’ chooses o <« Z, uniformly at random and sets h := g7, i.e., implicitly
z =z, and ¢ := ¢g"h?. It send pk := (h,c) and o to A. By construction, o is a valid
signature for m with respect to the public key pk := (h,¢). G,q,g and h are chosen
exactly as in the real game. If x # 0, then for any m the distribution of ¢ := g™
with o < Z is identical to the distribution of ¢;ea1 := ¢¥ with y < Z, in the real game.
In both cases, o is uniquely determined given ¢, h and m. Since x = 0 happens with
negligible probability 1/q, the view of A when given pk = (¢, h) and o is computational
indistinguishable from its view in a real execution of SigForgeiJg_l_”aCMA. When A
outputs a forgery (m*, o*), A’ first checks m # m* and o # o*. If A is successful,
this is always true and thus, in this case, A’ outputs 2’ := (m — m*)(c — ¢*)~! mod q.
Otherwise A’ outputs 2z’ < Z, uniformly at random. If A succeeds and outputs a valid

forgery, then
gm*Jrzo* _ gm*ho* —c= gmha _ ngrzU.

This implies m* + zo* = m + zo, hence z = (m — m*)(c* — o) "' mod ¢q. Thus, if z # 0
and A succeeds, then A’ solves the discrete logarithm problem. Assuming the hardness
of the discrete logarithm problem relative to G it follows

Pr[A wins| = Pr[A wins A z # 0] + Pr[A wins A z = 0]

< Pr[A’ solves DLog] + 1/q < negl(n).
This proves EUF-1-naCMA-security of the scheme. L]

PS13-3

