To get credit for this homework it must be submitted no later than Wednesday, January 23rd via email to michael.walter@ist.ac.at, please use "MC18 Homework 13" as subject. Please put your solutions into a single pdf file¹ and name this file Yourlastname_HW13.pdf.

- 1. Hash-and-Sign
 - (3 Points) Provide a formal proof of security of the hash-and-sign paradigm, i.e. prove the following theorem:

Theorem 1 If Σ is an EUF-CMA secure signature scheme for messages of length k and Γ is collision resistant, then Σ' is an EUF-CMA secure signature scheme (for arbitrary-length messages).

- 2. RSA signatures
 - [12.3 in book, 2nd edition] (2 Points) In the lecture we have seen an attack on the textbook RSA signature scheme in which an attacker forges a signature on an arbitrary message using two signing queries. Show how an attacker can forge a signature on an arbitrary message using a single signing query.
- 3. DSA Signatures
 - [12.7 in book, 2nd edition] (2 Points) Consider a variant of DSA in which the message space is \mathbb{Z}_q and H is omitted. (So the second component of the signature is now $s := k^{-1} \cdot (m + xr) \mod q$.) Show that this variant is not secure.
- 4. One-time signatures
 - (1 Point) Write down the experiment for existential unfogeability under a one-time non-adaptive chosen message attack (EUF-1-naCMA security).
 - (2 Points) For the one-time signatures under the discrete logarithm problem from the lecture (slide 25) show the following theorem:

Theorem 2 If the discrete-logarithm problem is hard relative to \mathcal{G} , then the signature scheme is EUF-1-naCMA secure.

 $^{^1\}mathrm{If}$ you don't know how to do it, you can use e.g. <code>https://www.pdfmerge.com/</code>