Solutions to Homework 12

Lecturer: Daniel Slamanig, TA: Karen Klein

1. ElGamal Encryption

- [11.6 in book, 2nd edition] Consider the following public-key encryption scheme. The public key is (G, q, g, y) and the private key is x, generated exactly as in the ElGamal encryption scheme. In order to encrypt a bit $b \in \{0, 1\}$, the sender does the following:
 - If b = 0 then choose a uniform $r \leftarrow \mathbb{Z}_q$ and compute $c_1 := g^r$ and $c_2 := y^r$. The ciphertext is (c_1, c_2) .
 - If b = 1 then choose independent uniform $r, s \stackrel{s}{\leftarrow} \mathbb{Z}_q$, compute $c_1 := g^r$ and $c_2 := g^s$, and set the ciphertext equal to (c_1, c_2) .

Show that it is possible to decrypt efficiently given knowledge of x. Prove that this encryption scheme is CPA-secure if the decisional Diffie-Hellman (DDH) problem is hard relative to \mathcal{G} .

Solution: A ciphertext (c_1, c_2) can be decrypted as follows: Compute c_1^x . If $c_2 = c_1^x$, then output 0, otherwise output 1. Decryption succeeds with all but negligible probability since for all x, r it holds $\Pr[g^s = y^r] = \Pr[s = xr] = \frac{1}{q}$.

We now prove CPA-security of the above scheme Π under the DDH assumption. Let \mathcal{A} be an adversary against the CPA-security of the scheme. We construct an adversary \mathcal{A}' for DDH which uses \mathcal{A} as a black-box. First, \mathcal{A}' receives a DDH instance $(G, q, g, g^x, g^{x'}, h)$ where either $h = g^{xx'}$ (if b = 0) or $h = g^z$ for $z \leftarrow \mathbb{Z}_q$ uniformly random (if b = 1). \mathcal{A}' sends the public key $\mathsf{pk} := (G, q, g, g^x)$ to \mathcal{A} . W.l.o.g., we assume that \mathcal{A} outputs the two messages $m_0 = 0$ and $m_1 = 1$ (note, the message space is $\{0, 1\}$). Then \mathcal{A}' sends the challenge ciphertext $c^* := (g^{x'}, h)$ to \mathcal{A} . If b = 0, then c^* looks like a proper encryption of m_0 , if b = 1, then c^* is an encryption of m_1 . Thus, upon receiving \mathcal{A} 's guess b', \mathcal{A}' outputs b'. Assuming DDH is hard relative to \mathcal{G} , we get

$$\begin{split} \mathsf{negl}(n) &\geq |\mathsf{Pr}[\mathcal{A}'(G, q, g, g^x, g^{x'}, g^{xx'}) = 1] - \mathsf{Pr}[\mathcal{A}'(G, q, g, g^x, g^{x'}, g^z) = 1]| \\ &= |1 - \mathsf{Pr}[\mathcal{A}'(G, q, g, g^x, g^{x'}, g^{xx'}) = 0] - \mathsf{Pr}[\mathcal{A}'(G, q, g, g^x, g^{x'}, g^z) = 1]| \\ &= |1 - \mathsf{Pr}[\mathsf{PubK}^{cpa}_{\mathcal{A},\Pi}(n) = 1|b = 0] - \mathsf{Pr}[\mathsf{PubK}^{cpa}_{\mathcal{A},\Pi}(n) = 1|b = 1]| \\ &= |1 - 2 \cdot \mathsf{Pr}[\mathsf{PubK}^{cpa}_{\mathcal{A},\Pi}(n) = 1]| \end{split}$$

for a negligible function negl. This implies CPA-security of the scheme Π :

$$\Pr[\mathsf{PubK}^{cpa}_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \mathsf{negl}(n).$$

• Prove the OW-CPA security of ElGamal if the computational Diffie-Hellman (CDH) problem is hard relative to \mathcal{G} .

Solution: Let \mathcal{A} be an adversary against the OW-CPA security of ElGamal. We construct an adversary \mathcal{A}' for CDH as follows: On input (G, q, g, g^x, x^y) , the algorithm \mathcal{A}' sets $\mathsf{pk} := (G, q, g, g^x)$ and $c^* := (g^y, c_2)$ with $c_2 \leftarrow G$ uniformly random. Thus, \mathcal{A}' implicitly defines $m = c_2(g^{xy})^{-1}$. Since c_2 was chosen uniformly at random, by Lemma 11.15, m is uniformly distributed, just as in the OW-CPA security game $\mathsf{PubK}^{ow-cpa}_{\mathcal{A},\mathcal{EG}}$. Then \mathcal{A}' sends (pk, c^*) to \mathcal{A} and receives some message m^* . If \mathcal{A} 's guess is correct, then it holds $m^* = m = c_2(g^{xy})^{-1}$ which implies $g^{xy} = c_2(m^*)^{-1}$. Thus, \mathcal{A}' outputs $h = c_2(m^*)^{-1}$. Clearly, if \mathcal{A} wins the game $\mathsf{PubK}^{ow-cpa}_{\mathcal{A},\mathcal{EG}}$, then also \mathcal{A}' succeeds in solving CDH. Hence, if CDH is hard relative to \mathcal{G} , then there exists a negligible function negl such that

$$\Pr[\mathsf{PubK}^{ow-cpa}_{\mathcal{A},\mathcal{EG}} = 1] \leq \Pr[\mathcal{A}'(G,q,g,g^x,g^y) = g^{xy}] \leq \mathsf{negl}(n).$$

This proves OW-CPA security of ElGamal.

- 2. Hybrid Encryption
 - [11.17 in book, 2nd edition] Let $\Pi = (Gen, Enc, Dec)$ be a CPA-secure public-key encryption scheme, and let $\Pi' = (Gen', Enc', Dec')$ be a CCA-secure private-key encryption scheme. Consider the following construction:

Let $H: \{0,1\}^n \to \mathcal{K}'$ be a function. Construct a public-key encryption scheme as follows:

- Gen^{*}: on input 1^n , run Gen (1^n) to obtain (pk, sk). Output these as the public and private keys, respectively.
- Enc^{*}: on input a public key pk and a message $m \in \mathcal{M}'$, choose a uniform $r \in \mathcal{M}$ and output the ciphertext

$$(\mathsf{Enc}_{\mathsf{pk}}(r), \mathsf{Enc}'_{H(r)}(m))$$

Dec^{*}: on input a private key sk and a ciphertext (c_1, c_2) , compute $r := \text{Dec}_{sk}(c_1)$ and set k := H(r). Then output $\text{Dec}'_k(c_2)$.

Is the above construction IND-CCA secure, if H is modeled as a random oracle? If yes, provide a proof. If not, show a counterexample (Hint: try ElGamal encryption for the PKE).

Solution: Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be the ElGamal encryption scheme, $\Pi' = (\text{Gen}', \text{Enc}', \text{Dec}')$ an arbitrary CCA-secure private-key encryption scheme. (In the lecture, we proved that ElGamal is CPA-secure if the DDH assumption holds.) We prove that the construction is not CCA-secure by defining an adversary \mathcal{A} as follows: Upon receiving the public key $\mathsf{pk} = (G, q, g, g^x)$, \mathcal{A} chooses two arbitrary distinct messages m_0, m_1 and sends them to the challenger. The challenger chooses $b \leftarrow \{0, 1\}, r \leftarrow G, s \leftarrow \mathbb{Z}_q$ uniformly at random, respectively, and sets $c_1^* = (g^s, r \cdot (g^x)^s)$ as defined in ElGamal encryption. Then it queries the random oracle H on input r, computes $c_2^* \leftarrow \mathsf{Enc}'_{H(r)}(m_b)$

and sends the challenge ciphertext $c^* := (c_1^*, c_2^*)$ to \mathcal{A} . The adversary \mathcal{A} then sets $c_1 := (g^s \cdot g, r \cdot (g^x)^s \cdot g^x) = (g^{s+1}, r \cdot (g^x)^{s+1})$. Note that this is an encryption of r with randomness $[s + 1 \mod q]$ and $c_1 \neq c_1^*$. Thus, upon its decryption query (c_1, c_2^*) the adversary receives the message m_b and wins the game with success probability 1 by outputting the bit b' such that $m_{b'} = m_b$.

- 3. RSA Encryption
 - [11.15 in book, 2nd edition] Consider the RSA-based encryption scheme in which a user encrypts a message $m \in \{0,1\}^{\ell}$ with respect to the public key (N, e) by computing $\hat{m} := H(m) || m$ and outputting the ciphertext $c := \hat{m}^e \mod N$. (Here, let $H : \{0,1\}^{\ell} \rightarrow \{0,1\}^n$ and assume $\ell + n < ||N||$, the bit-length of N). The receiver recovers \hat{m} in the usual way and verifies that it has the correct form before outputting the ℓ least-significant bits as m. Prove or disprove that this scheme is CCA-secure if H is modeled as a random oracle.

Solution: This scheme is not even CPA-secure since it is deterministic. Since any attacker against CPA security also gives an attacker against CCA security (who doesn't use its decryption oracle), this in particular breaks CCA-security of the above scheme. Recall the following attack against CPA security of any deterministic encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$: Given the public key pk, the attacker chooses two arbitrary distinct messages m_0, m_1 and sends them to the challenger. Upon receipt of the challenge ciphertext $c^* \leftarrow \text{Enc}_{pk}(m_b)$ for a uniformly chosen bit $b \in \{0, 1\}$, the attacker computes $c_0 := \text{Enc}_{pk}(m_0)$ and $c_1 := \text{Enc}_{pk}(m_1)$. It outputs b' such that $c_{b'} = c^*$. Since the encryption scheme is deterministic and $m_0 \neq m_1$, the attacker succeeds with probability 1.