Modern Cryptography	Jan 8, 2019
Homework 12	
Lecturer: Daniel Slamanig, TA: Karen Klein	Due: 23.59 CET, Jan 16, 2019

To get credit for this homework it must be submitted no later than Wednesday, January 16th via email to michael.walter@ist.ac.at, please use "MC18 Homework 12" as subject. Please put your solutions into a single pdf file¹ and name this file Yourlastname_HW12.pdf.

- 1. ElGamal Encryption
 - [11.6 in book, 2nd edition] (3 Points) Consider the following public-key encryption scheme. The public key is (G, q, g, y) and the private key is x, generated exactly as in the ElGamal encryption scheme. In order to encrypt a bit $b \in \{0, 1\}$, the sender does the following:
 - If b = 0 then choose a uniform $r \leftarrow \mathbb{Z}_q$ and compute $c_1 := g^r$ and $c_2 := y^r$. The ciphertext is (c_1, c_2) .
 - If b = 1 then choose independent uniform $r, s \leftarrow \mathbb{Z}_q$, compute $c_1 := g^r$ and $c_2 := g^s$, and set the ciphertext equal to (c_1, c_2) .

Show that it is possible to decrypt efficiently given knowledge of x. Prove that this encryption scheme is CPA-secure if the decisional Diffie-Hellman (DDH) problem is hard relative to \mathcal{G} .

- (3 Points) Prove the OW-CPA security of ElGamal if the computational Diffie-Hellman (CDH) problem is hard relative to \mathcal{G} .
- 2. Hybrid Encryption
 - [11.17 in book, 2nd edition] (2 Points) Let $\Pi = (Gen, Enc, Dec)$ be a CPA-secure public-key encryption scheme, and let $\Pi' = (Gen', Enc', Dec')$ be a CCA-secure private-key encryption scheme. Consider the following construction:

¹If you don't know how to do it, you can use e.g. https://www.pdfmerge.com/

Let $H:\{0,1\}^n\to \mathcal{K}'$ be a function. Construct a public-key encryption scheme as follows:

- $\mathsf{Gen}^*:$ on input 1^n , run $\mathsf{Gen}(1^n)$ to obtain $(\mathsf{pk},\mathsf{sk}).$ Output these as the public and private keys, respectively.
- Enc^{*}: on input a public key pk and a message $m \in \mathcal{M}'$, choose a uniform $r \in \mathcal{M}$ and output the ciphertext

$$(\mathsf{Enc}_{\mathsf{pk}}(r), \mathsf{Enc}'_{H(r)}(m))$$

 Dec^* : on input a private key sk and a ciphertext (c_1, c_2) , compute $r := \mathsf{Dec}_{\mathsf{sk}}(c_1)$ and set k := H(r). Then output $\mathsf{Dec}'_k(c_2)$.

Is the above construction IND-CCA secure, if H is modeled as a random oracle? If yes, provide a proof. If not, show a counterexample (Hint: try ElGamal encryption for the PKE).

3. RSA Encryption

• [11.15 in book, 2nd edition] (2 Points) Consider the RSA-based encryption scheme in which a user encrypts a message $m \in \{0,1\}^{\ell}$ with respect to the public key (N,e)by computing $\hat{m} := H(m) || m$ and outputting the ciphertext $c := \hat{m}^e \mod N$. (Here, let $H : \{0,1\}^{\ell} \to \{0,1\}^n$ and assume $\ell + n < ||N||$, the bit-length of N). The receiver recovers \hat{m} in the usual way and verifies that it has the correct form before outputting the ℓ least-significant bits as m. Prove or disprove that this scheme is CCA-secure if His modeled as a random oracle.