Modern Cryptography January 16, 2019

Solutions to Homework 11

Lecturer: Daniel Slamanig, TA: Karen Klein

1. Key Exchange

e [10.4 in book, 2nd edition] Consider the following key-exchange protocol:

— Alice chooses uniform k,r € {0,1}", and sends s := k @ r to Bob.
— Bob chooses uniform ¢ € {0,1}", and sends u := s @ ¢ to Alice.

— Alice computes w := u & r and sends w to Bob.

— Alice outputs k& and Bob outputs w & t.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e.,
either prove its security or show a concrete attack).

Solution: First, we show that Alice and Bob output the same key k:
WPt=uPrPt=sPtOrOt=sOr=kordr=>=k.

In the key exchange security game P(Ef:\h an adversary A gets to see the transcript
trans = (s,u,w) and a key k* where k* either is the real key k (if b = 0) or a uniformly
random string in {0,1}" (if b = 1). In the end of the game, A outputs a bit b* and he
wins the game if b* = b. The key exchange protocol II is called secure in the presence
of an eavesdropper, if for every PPT adversary A there exists a negligible function negl
such that

1
Prib* = b] < 3 + negl(n).
The above protocol is clearly not secure. To see this, note that
sGudbw=(kor)o(kordt)d(kdrdtdr) =k.

Thus, we construct an adversary A as follows: First, A computes k' = s ® u & w. Then
he outputs v* = 0 if k* = £/, and b* = 1 else. Obviously, A wins the game except for
the case where b = 1 and the uniformly random key k* happens to coincide with the

real key k. Since Pr[k* = kb = 1] = 2%, we can compute A’s success probability as
Pribp* =b] =1— 2,1% which is clearly larger than % + negl(n) for any negligible function
negl(n). [

2. Textbook RSA encryption

e Prove the correctness of the textbook RSA encryption algorithm as introduced in the
lecture, i.e., show that for all n € N, ((d, N), (e, N)) + KeyGen(1™) any m € Zy it holds
that (m®¢)? = m (mod N).
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Solution: By the chinese remainder theorem, we know that f : Zy — Z, x Zg, f(x) =
([x mod p], [x mod ¢]) is a group isomorphism. It is easy to show, that f also preserves
the multiplicative structure!: Let =,y € Zy, then

f(zy) = ([zy mod p], [xy mod g]) = ([[z mod p|-[y mod p] mod p], [[x mod g]-[y mod ¢] mod q])

= ([ mod pl, [z mod g]) - ([y mod p, [y mod ¢]) = f(z) - f(y).

For x), € Z;, i € Z, it holds :c;, = xfomOd ®=Y mod psince |Zj| = p—1. On the other hand,

also 0° = 0 = 0?™°d (=Y mod p for all i € Z \ (p — 1)Z ? and in particular for all i € Z

such that ged(i, o(N)) = 1, so it holds 2, = x;mOd =1 110d p for all xp € Lp, i € Z such

that ged(i, o(N)) = 1. For k € N it follows 2’ = x;mOd =) _ x;mOd k(p=1) mod p for
all z,, € Z,. Similar relations hold in Z,. For z € Zy, z, = [« mod pl|, z; = [z mod ¢],
and ¢ € Z such that ged(i, (V) = 1 it follows:

o' = fHfY) = T f()) = f([#), mod p], [z}, mod q]) =
f—l([x;mod (P=1@=1) m0d l, [xémod (P=1@=1) mod q))

_ f—l(f(x)z mod Lp(N)) — mod p(N) mod N.

We now prove correctness of textbook RSA. The algorithm KeyGen picks a uniformly
random element e in Z7 ), computes its inverse d := e~ ! mod p(N) and outputs
(sk,pk) = ((d,N),(e,N)). In particular, we have ed = de = 1 mod ¢(N). This im-
plies for any message m € Zy:

Dec(Enc(m, pk), sk) = Dec([m® mod N1), sk) = [[m® mod N]¢ mod N] = [(m®)? mod N]
= [m* mod N] = [m!*?™°d M mod N] = [m! mod N] = m.
O

e Show that factoring an RSA integer N = pq is equivalent to computing the order ¢(N)
of the group Z};. Use this result to show that an efficient algotithm for factoring yields
an efficient algorithm for solving RSA.

Solution: For an RSA modulus N = pq it holds p(N) = (p—1)(¢—1) =pg—p—q+1 =
N —p—q+1. Thus, any PPT algorithm A for factoring an RSA integer N trivially leads
to a PPT algorithm A’ for computing ¢(N) and A’ has the same success probability as
A. On the other hand, let A be a PPT algorithm for computing ¢(/NV) for an RSA integer
N. Then we define an algorithm A’ for factoring as follows: Given an RSA modulus N,
first A’ runs A on N to obtain an integer v. An integer 7 is a nontrivial factor of N, i.e.,
m =por = q, if and only if 7 is a solution to ¢(N) = N — 7 — N/7 + 1. Multiplying
this equation by 7 leads to the quadratic equation 72 — (N — ¢(N) + 1)7 + N = 0 with
the two solutions m = p and ™ = ¢. Thus, A’ proceeds by solving the quadratic equation

!Note, for the restriction f |Z?v this is already known by the chinese remainder theorem.
2Note, for i € (p — 1)Z it holds [i mod (p — 1)] = 0 and hence 0° =0 # 1 = 0° = 0" ™°¢ =D On the other hand,
for all i € Z \ (p — 1)Z we have [i mod (p — 1)] > 0 and the equality is satisfied.
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712 — (N —v+1)7 + N = 0 in the variable 7 and outputs its two solutions. A’ succeeds

in factoring N whenever A succeeds in computing ¢(N). This proves equivalence of
factoring N = pq and computing ¢(N).

We now use this result to show that any efficient algorithm for factoring yields an efficient
algorithm for solving RSA. Let A be an efficient algorithm for factoring and (N, e,y)
an RSA instance. We construct an efficient algorithm for RSA as follows: First, A’
queries A on N and receives two integers 7,n’. If 77’ = N, then A computes ¢(N)
and computes d := e~! mod ¢(N). It outputs = := y? mod N. Otherwise, A’ outputs a
uniform = € Z%. The success probability of A" can thus be lowerbounded by the success
probability of A:

PF[RSA - InV.A/,GenRS/-\(n) = 1] > Pr[FaCtoringA,GenModqus(n)]'

3. IND-CPA secure encryption in the ROM

e [11.19 in book, 2nd edition] Say three users have RSA public keys (3, N1) , (3, Na),
and (3, N3) (i.e., they all use e = 3), with N; < Ny < N3. Consider the following
method for sending the same message m € {0,1} to each of these parties: choose a
uniform r < Z}; , and send to everyone the same ciphertext

(c1,¢a,¢3,¢4) := (r> mod Ny, > mod Na, r® mod N3, H(r) @ m)

where H : Zy, — {0, 1}¢. Assume £ > n.

— Show that this is not IND-CPA-secure, and an adversary can recover m from the
ciphertext even when H is modeled as a random oracle (Hint: Chinese remainder
theorem).

Solution: If Nj, Ny, N3 are not pairwise coprime, then there are i, j € {1,2,3},7 # j
such that gcd(N;, INj) is a nontrivial factor of N;, hence the adversary can factor
N; and solve RSA as shown in exercise 2. Thus, in this case it is easy to recover
r from ¢;. The adversary then queries the random oracle on input r and computes
m = ¢4 ® H(r). Now assume Ny, No, N3 are pairwise coprime. Then by the Chinese
remainder theorem it holds Z]’(,l NoNg = 2N, X Zj{,z X Zy, where the isomorphism is
given as f(z) = ([x mod Ni], [x mod N3], [z mod N3]) and can be efficiently inverted.
Thus, an adversary can compute [r® mod NyNaN3] = f~1(c1,c2,c3). Since r €
Zy,, we have 0 < r < Nj, which implies 0 < rd < Nf’ < N1NyN3 and, hence,
[3 mod N1NaN3] = r3 is a cube in Z. This implies, that an adversary can recover
r by simply computing the cube root of [r® mod NiNoN3| in Z, which can be done
efficiently. L]

— Show a simple way to fix this and get a IND-CPA-secure method that transmits
a ciphertext of length 3¢ + O(n) (you do not need to provide a formal proof of
IND-CPA security).

Solution: An easy way to fix this is to choose three independent values 1,7y, r3
Zy, and send the ciphertext

[r$ mod Nq], [r§ mod Na], [r3 mod Nj, )

(c1, €2, ¢3, ¢4, ¢5,C6) = ( H(ri)®m, H(re)®m, H(rs)®m
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O

— Show a better approach that is still IND-CPA-secure but with a ciphertext of length
¢+ O(n) (you do not need to provide a formal proof of IND-CPA security).
Solution: An easy approach would be to simply use a larger exponent e, e.g.,
a uniformly random e. Although there is no explicit attack known, there doesn’t
seem to be a simple proof from RSA either. Thus, we will follow a different approach
based on hybrid encryption: Let (Enc, Dec) be a CPA-secure private-key encryption
scheme and H : Z3 — {0,1}" a random oracle. To send the message m € {0, 1},
choose four independent values rq,ry,r3 — Z3 »oand k< {0,1}™, and send the
ciphertext

(c1,c2,c3,¢4,C5,Co,C7) 1= [r{ mod N1, [r§ mod No], [r§ mod Na],
1,€2,€3,C4,C5,C6,C7) -— H(T’1)@k, H(T’Q)@k, H(r3)@k7 Ean(m) ’

O
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