
Modern Cryptography January 16, 2019

Solutions to Homework 11

Lecturer: Daniel Slamanig, TA: Karen Klein

1. Key Exchange

• [10.4 in book, 2nd edition] Consider the following key-exchange protocol:

– Alice chooses uniform k, r ∈ {0, 1}n, and sends s := k ⊕ r to Bob.

– Bob chooses uniform t ∈ {0, 1}n, and sends u := s⊕ t to Alice.

– Alice computes w := u⊕ r and sends w to Bob.

– Alice outputs k and Bob outputs w ⊕ t.
Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e.,
either prove its security or show a concrete attack).

Solution: First, we show that Alice and Bob output the same key k:

w ⊕ t = u⊕ r ⊕ t = s⊕ t⊕ r ⊕ t = s⊕ r = k ⊕ r ⊕ r = k.

In the key exchange security game K̂E
eav

A,Π an adversary A gets to see the transcript
trans = (s, u, w) and a key k∗ where k∗ either is the real key k (if b = 0) or a uniformly
random string in {0, 1}n (if b = 1). In the end of the game, A outputs a bit b∗ and he
wins the game if b∗ = b. The key exchange protocol Π is called secure in the presence
of an eavesdropper, if for every PPT adversary A there exists a negligible function negl
such that

Pr[b∗ = b] ≤ 1

2
+ negl(n).

The above protocol is clearly not secure. To see this, note that

s⊕ u⊕ w = (k ⊕ r)⊕ (k ⊕ r ⊕ t)⊕ (k ⊕ r ⊕ t⊕ r) = k.

Thus, we construct an adversary A as follows: First, A computes k′ = s⊕ u⊕w. Then
he outputs b∗ = 0 if k∗ = k′, and b∗ = 1 else. Obviously, A wins the game except for
the case where b = 1 and the uniformly random key k∗ happens to coincide with the
real key k. Since Pr[k∗ = k|b = 1] = 1

2n , we can compute A’s success probability as
Pr[b∗ = b] = 1− 1

2n+1 which is clearly larger than 1
2 + negl(n) for any negligible function

negl(n).

2. Textbook RSA encryption

• Prove the correctness of the textbook RSA encryption algorithm as introduced in the
lecture, i.e., show that for all n ∈ N, ((d,N), (e,N))← KeyGen(1n) any m ∈ ZN it holds
that (me)d ≡ m (mod N).
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Solution: By the chinese remainder theorem, we know that f : ZN → Zp × Zq, f(x) =
([x mod p], [x mod q]) is a group isomorphism. It is easy to show, that f also preserves
the multiplicative structure1: Let x, y ∈ ZN , then

f(xy) = ([xy mod p], [xy mod q]) = ([[x mod p]·[y mod p] mod p], [[x mod q]·[y mod q] mod q])

= ([x mod p], [x mod q]) · ([y mod p], [y mod q]) = f(x) · f(y).

For xp ∈ Z∗p, i ∈ Z, it holds xip = x
i mod (p−1)
p mod p since |Z∗p| = p−1. On the other hand,

also 0i = 0 = 0i mod (p−1) mod p for all i ∈ Z \ (p− 1)Z 2 and in particular for all i ∈ Z
such that gcd(i, ϕ(N)) = 1, so it holds xip = x

i mod (p−1)
p mod p for all xp ∈ Zp, i ∈ Z such

that gcd(i, ϕ(N)) = 1. For k ∈ N it follows xi = x
i mod (p−1)
p = x

i mod k(p−1)
p mod p for

all xp ∈ Zp. Similar relations hold in Zq. For x ∈ ZN , xp = [x mod p], xq = [x mod q],
and i ∈ Z such that gcd(i, ϕ(N)) = 1 it follows:

xi = f−1(f(xi)) = f−1(f(x)i) = f−1([xip mod p], [xiq mod q]) =

f−1([xi mod (p−1)(q−1)
p mod p], [xi mod (p−1)(q−1)

q mod q])

= f−1(f(x)i mod ϕ(N)) = xi mod ϕ(N) mod N.

We now prove correctness of textbook RSA. The algorithm KeyGen picks a uniformly
random element e in Z∗ϕ(N), computes its inverse d := e−1 mod ϕ(N) and outputs

(sk , pk) = ((d,N), (e,N)). In particular, we have ed = de = 1 mod ϕ(N). This im-
plies for any message m ∈ ZN :

Dec(Enc(m, pk), sk) = Dec([me mod N ]), sk) = [[me mod N ]d mod N ] = [(me)d mod N ]

= [med mod N ] = [m[ed mod ϕ(N)] mod N ] = [m1 mod N ] = m.

• Show that factoring an RSA integer N = pq is equivalent to computing the order ϕ(N)
of the group Z∗N . Use this result to show that an efficient algotithm for factoring yields
an efficient algorithm for solving RSA.

Solution: For an RSA modulus N = pq it holds ϕ(N) = (p−1)(q−1) = pq−p−q+1 =
N−p−q+1. Thus, any PPT algorithm A for factoring an RSA integer N trivially leads
to a PPT algorithm A′ for computing ϕ(N) and A′ has the same success probability as
A. On the other hand, let A be a PPT algorithm for computing ϕ(N) for an RSA integer
N . Then we define an algorithm A′ for factoring as follows: Given an RSA modulus N ,
first A′ runs A on N to obtain an integer ν. An integer π is a nontrivial factor of N , i.e.,
π = p or π = q, if and only if π is a solution to ϕ(N) = N − π −N/π + 1. Multiplying
this equation by π leads to the quadratic equation π2 − (N − ϕ(N) + 1)π +N = 0 with
the two solutions π = p and π = q. Thus, A′ proceeds by solving the quadratic equation

1Note, for the restriction f |Z∗
N

this is already known by the chinese remainder theorem.
2Note, for i ∈ (p− 1)Z it holds [i mod (p− 1)] = 0 and hence 0i = 0 6= 1 = 00 = 0i mod (p−1). On the other hand,

for all i ∈ Z \ (p− 1)Z we have [i mod (p− 1)] > 0 and the equality is satisfied.
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π2 − (N − ν + 1)π +N = 0 in the variable π and outputs its two solutions. A′ succeeds
in factoring N whenever A succeeds in computing ϕ(N). This proves equivalence of
factoring N = pq and computing ϕ(N).

We now use this result to show that any efficient algorithm for factoring yields an efficient
algorithm for solving RSA. Let A be an efficient algorithm for factoring and (N, e, y)
an RSA instance. We construct an efficient algorithm for RSA as follows: First, A′
queries A on N and receives two integers π, π′. If ππ′ = N , then A computes ϕ(N)
and computes d := e−1 mod ϕ(N). It outputs x := yd mod N . Otherwise, A′ outputs a
uniform x ∈ Z∗N . The success probability of A′ can thus be lowerbounded by the success
probability of A:

Pr[RSA− InvA′,GenRSA(n) = 1] ≥ Pr[FactoringA,GenModulus(n)].

3. IND-CPA secure encryption in the ROM

• [11.19 in book, 2nd edition] Say three users have RSA public keys (3, N1) , (3, N2),
and (3, N3) (i.e., they all use e = 3), with N1 < N2 < N3. Consider the following
method for sending the same message m ∈ {0, 1}` to each of these parties: choose a
uniform r ← Z∗N1

, and send to everyone the same ciphertext

(c1, c2, c3, c4) := (r3 mod N1, r
3 mod N2, r

3 mod N3, H(r)⊕m)

where H : Z∗N1
→ {0, 1}`. Assume `� n.

– Show that this is not IND-CPA-secure, and an adversary can recover m from the
ciphertext even when H is modeled as a random oracle (Hint: Chinese remainder
theorem).

Solution: IfN1, N2, N3 are not pairwise coprime, then there are i, j ∈ {1, 2, 3}, i 6= j
such that gcd(Ni, Nj) is a nontrivial factor of Ni, hence the adversary can factor
Ni and solve RSA as shown in exercise 2. Thus, in this case it is easy to recover
r from ci. The adversary then queries the random oracle on input r and computes
m = c4⊕H(r). Now assume N1, N2, N3 are pairwise coprime. Then by the Chinese
remainder theorem it holds Z∗N1N2N3

' Z∗N1
× Z∗N2

× Z∗N3
where the isomorphism is

given as f(x) = ([x mod N1], [x mod N2], [x mod N3]) and can be efficiently inverted.
Thus, an adversary can compute [r3 mod N1N2N3] = f−1(c1, c2, c3). Since r ∈
Z∗N1

, we have 0 < r < N1, which implies 0 < r3 < N3
1 < N1N2N3 and, hence,

[r3 mod N1N2N3] = r3 is a cube in Z. This implies, that an adversary can recover
r by simply computing the cube root of [r3 mod N1N2N3] in Z, which can be done
efficiently.

– Show a simple way to fix this and get a IND-CPA-secure method that transmits
a ciphertext of length 3` + O(n) (you do not need to provide a formal proof of
IND-CPA security).

Solution: An easy way to fix this is to choose three independent values r1, r2, r3 ←
Z∗N1

and send the ciphertext

(c1, c2, c3, c4, c5, c6) :=

(
[r3

1 mod N1], [r3
2 mod N2], [r3

3 mod N3],
H(r1)⊕m, H(r2)⊕m, H(r3)⊕m

)
.
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– Show a better approach that is still IND-CPA-secure but with a ciphertext of length
`+O(n) (you do not need to provide a formal proof of IND-CPA security).

Solution: An easy approach would be to simply use a larger exponent e, e.g.,
a uniformly random e. Although there is no explicit attack known, there doesn’t
seem to be a simple proof from RSA either. Thus, we will follow a different approach
based on hybrid encryption: Let (Enc,Dec) be a CPA-secure private-key encryption
scheme and H : Z∗N1

→ {0, 1}n a random oracle. To send the message m ∈ {0, 1}`,
choose four independent values r1, r2, r3 ← Z∗N1

, and k ← {0, 1}n, and send the
ciphertext

(c1, c2, c3, c4, c5, c6, c7) :=

(
[r3

1 mod N1], [r3
2 mod N2], [r3

3 mod N3],
H(r1)⊕ k, H(r2)⊕ k, H(r3)⊕ k, Enck(m)

)
.
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