Solutions to Homework 11

Lecturer: Daniel Slamanig, TA: Karen Klein

1. Key Exchange

- [10.4 in book, 2nd edition] Consider the following key-exchange protocol:
 - Alice chooses uniform $k, r \in \{0, 1\}^n$, and sends $s := k \oplus r$ to Bob.
 - Bob chooses uniform $t \in \{0, 1\}^n$, and sends $u := s \oplus t$ to Alice.
 - Alice computes $w := u \oplus r$ and sends w to Bob.
 - Alice outputs k and Bob outputs $w \oplus t$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).

Solution: First, we show that Alice and Bob output the same key k:

$$w \oplus t = u \oplus r \oplus t = s \oplus t \oplus r \oplus t = s \oplus r = k \oplus r \oplus r = k.$$

In the key exchange security game $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}$ an adversary \mathcal{A} gets to see the transcript trans = (s, u, w) and a key k^* where k^* either is the real key k (if b = 0) or a uniformly random string in $\{0,1\}^n$ (if b = 1). In the end of the game, \mathcal{A} outputs a bit b^* and he wins the game if $b^* = b$. The key exchange protocol Π is called secure in the presence of an eavesdropper, if for every PPT adversary \mathcal{A} there exists a negligible function negl such that

$$\Pr[b^* = b] \le \frac{1}{2} + \operatorname{negl}(n).$$

The above protocol is clearly not secure. To see this, note that

$$s\oplus u\oplus w=(k\oplus r)\oplus (k\oplus r\oplus t)\oplus (k\oplus r\oplus t\oplus r)=k.$$

Thus, we construct an adversary \mathcal{A} as follows: First, \mathcal{A} computes $k' = s \oplus u \oplus w$. Then he outputs $b^* = 0$ if $k^* = k'$, and $b^* = 1$ else. Obviously, \mathcal{A} wins the game except for the case where b = 1 and the uniformly random key k^* happens to coincide with the real key k. Since $\Pr[k^* = k|b = 1] = \frac{1}{2^n}$, we can compute \mathcal{A} 's success probability as $\Pr[b^* = b] = 1 - \frac{1}{2^{n+1}}$ which is clearly larger than $\frac{1}{2} + \operatorname{negl}(n)$ for any negligible function $\operatorname{negl}(n)$.

- 2. Textbook RSA encryption
 - Prove the correctness of the textbook RSA encryption algorithm as introduced in the lecture, i.e., show that for all $n \in \mathbb{N}$, $((d, N), (e, N)) \leftarrow \mathsf{KeyGen}(1^n)$ any $m \in \mathbb{Z}_N$ it holds that $(m^e)^d \equiv m \pmod{N}$.

Solution: By the chinese remainder theorem, we know that $f : \mathbb{Z}_N \to \mathbb{Z}_p \times \mathbb{Z}_q$, $f(x) = ([x \mod p], [x \mod q])$ is a group isomorphism. It is easy to show, that f also preserves the multiplicative structure¹: Let $x, y \in \mathbb{Z}_N$, then

 $f(xy) = ([xy \mod p], [xy \mod q]) = ([[x \mod p] \cdot [y \mod p] \mod p], [[x \mod q] \cdot [y \mod q] \mod q])$ $= ([x \mod p], [x \mod q]) \cdot ([y \mod p], [y \mod q]) = f(x) \cdot f(y).$

For $x_p \in \mathbb{Z}_p^*$, $i \in \mathbb{Z}$, it holds $x_p^i = x_p^{i \mod (p-1)} \mod p$ since $|\mathbb{Z}_p^*| = p-1$. On the other hand, also $0^i = 0 = 0^{i \mod (p-1)} \mod p$ for all $i \in \mathbb{Z} \setminus (p-1)\mathbb{Z}^2$ and in particular for all $i \in \mathbb{Z}$ such that $gcd(i, \varphi(N)) = 1$, so it holds $x_p^i = x_p^{i \mod (p-1)} \mod p$ for all $x_p \in \mathbb{Z}_p$, $i \in \mathbb{Z}$ such that $gcd(i, \varphi(N)) = 1$. For $k \in \mathbb{N}$ it follows $x^i = x_p^{i \mod (p-1)} = x_p^{i \mod k(p-1)} \mod p$ for all $x_p \in \mathbb{Z}_p$. Similar relations hold in \mathbb{Z}_q . For $x \in \mathbb{Z}_N$, $x_p = [x \mod p], x_q = [x \mod q]$, and $i \in \mathbb{Z}$ such that $gcd(i, \varphi(N)) = 1$ it follows:

$$\begin{aligned} x^{i} &= f^{-1}(f(x^{i})) = f^{-1}(f(x)^{i}) = f^{-1}([x_{p}^{i} \mod p], [x_{q}^{i} \mod q]) = \\ f^{-1}([x_{p}^{i} \mod (p-1)(q-1) \mod p], [x_{q}^{i} \mod (p-1)(q-1) \mod q]) \\ &= f^{-1}(f(x)^{i \mod \varphi(N)}) = x^{i \mod \varphi(N)} \mod N. \end{aligned}$$

We now prove correctness of textbook RSA. The algorithm KeyGen picks a uniformly random element e in $\mathbb{Z}_{\varphi(N)}^*$, computes its inverse $d := e^{-1} \mod \varphi(N)$ and outputs (sk, pk) = ((d, N), (e, N)). In particular, we have $ed = de = 1 \mod \varphi(N)$. This implies for any message $m \in \mathbb{Z}_N$:

$$\mathsf{Dec}(\mathsf{Enc}(m, pk), sk) = \mathsf{Dec}([m^e \mod N]), sk) = [[m^e \mod N]^d \mod N] = [(m^e)^d \mod N]$$
$$= [m^{ed} \mod N] = [m^{[ed \mod \varphi(N)]} \mod N] = [m^1 \mod N] = m.$$

• Show that factoring an RSA integer N = pq is equivalent to computing the order $\varphi(N)$ of the group \mathbb{Z}_N^* . Use this result to show that an efficient algorithm for factoring yields an efficient algorithm for solving RSA.

Solution: For an RSA modulus N = pq it holds $\varphi(N) = (p-1)(q-1) = pq-p-q+1 = N-p-q+1$. Thus, any PPT algorithm \mathcal{A} for factoring an RSA integer N trivially leads to a PPT algorithm \mathcal{A}' for computing $\varphi(N)$ and \mathcal{A}' has the same success probability as \mathcal{A} . On the other hand, let \mathcal{A} be a PPT algorithm for computing $\varphi(N)$ for an RSA integer N. Then we define an algorithm \mathcal{A}' for factoring as follows: Given an RSA modulus N, first \mathcal{A}' runs \mathcal{A} on N to obtain an integer ν . An integer π is a nontrivial factor of N, i.e., $\pi = p$ or $\pi = q$, if and only if π is a solution to $\varphi(N) = N - \pi - N/\pi + 1$. Multiplying this equation by π leads to the quadratic equation $\pi^2 - (N - \varphi(N) + 1)\pi + N = 0$ with the two solutions $\pi = p$ and $\pi = q$. Thus, \mathcal{A}' proceeds by solving the quadratic equation

¹Note, for the restriction $f|_{\mathbb{Z}_N^*}$ this is already known by the chinese remainder theorem.

²Note, for $i \in (p-1)\mathbb{Z}$ it holds $[i \mod (p-1)] = 0$ and hence $0^i = 0 \neq 1 = 0^0 = 0^{i \mod (p-1)}$. On the other hand, for all $i \in \mathbb{Z} \setminus (p-1)\mathbb{Z}$ we have $[i \mod (p-1)] > 0$ and the equality is satisfied.

 $\pi^2 - (N - \nu + 1)\pi + N = 0$ in the variable π and outputs its two solutions. \mathcal{A}' succeeds in factoring N whenever \mathcal{A} succeeds in computing $\varphi(N)$. This proves equivalence of factoring N = pq and computing $\varphi(N)$.

We now use this result to show that any efficient algorithm for factoring yields an efficient algorithm for solving RSA. Let \mathcal{A} be an efficient algorithm for factoring and (N, e, y) an RSA instance. We construct an efficient algorithm for RSA as follows: First, \mathcal{A}' queries \mathcal{A} on N and receives two integers π, π' . If $\pi\pi' = N$, then \mathcal{A} computes $\varphi(N)$ and computes $d := e^{-1} \mod \varphi(N)$. It outputs $x := y^d \mod N$. Otherwise, \mathcal{A}' outputs a uniform $x \in \mathbb{Z}_N^*$. The success probability of \mathcal{A}' can thus be lowerbounded by the success probability of \mathcal{A} :

$$\Pr[\mathsf{RSA} - \mathsf{Inv}_{\mathcal{A}',\mathsf{GenRSA}}(n) = 1] \ge \Pr[\mathsf{Factoring}_{\mathcal{A},\mathsf{GenModulus}}(n)].$$

3. IND-CPA secure encryption in the ROM

• [11.19 in book, 2nd edition] Say three users have RSA public keys $(3, N_1)$, $(3, N_2)$, and $(3, N_3)$ (i.e., they all use e = 3), with $N_1 < N_2 < N_3$. Consider the following method for sending the same message $m \in \{0, 1\}^{\ell}$ to each of these parties: choose a uniform $r \leftarrow \mathbb{Z}_{N_1}^*$, and send to everyone the same ciphertext

$$(c_1, c_2, c_3, c_4) := (r^3 \mod N_1, r^3 \mod N_2, r^3 \mod N_3, H(r) \oplus m)$$

where $H : \mathbb{Z}_{N_1}^* \to \{0, 1\}^{\ell}$. Assume $\ell \gg n$.

- Show that this is not IND-CPA-secure, and an adversary can recover m from the ciphertext even when H is modeled as a random oracle (Hint: Chinese remainder theorem).

Solution: If N_1, N_2, N_3 are not pairwise coprime, then there are $i, j \in \{1, 2, 3\}, i \neq j$ such that $gcd(N_i, N_j)$ is a nontrivial factor of N_i , hence the adversary can factor N_i and solve RSA as shown in exercise 2. Thus, in this case it is easy to recover r from c_i . The adversary then queries the random oracle on input r and computes $m = c_4 \oplus H(r)$. Now assume N_1, N_2, N_3 are pairwise coprime. Then by the Chinese remainder theorem it holds $Z_{N_1N_2N_3}^* \simeq Z_{N_1}^* \times Z_{N_2}^* \times Z_{N_3}^*$ where the isomorphism is given as $f(x) = ([x \mod N_1], [x \mod N_2], [x \mod N_3])$ and can be efficiently inverted. Thus, an adversary can compute $[r^3 \mod N_1N_2N_3] = f^{-1}(c_1, c_2, c_3)$. Since $r \in$ $\mathbb{Z}_{N_1}^*$, we have $0 < r < N_1$, which implies $0 < r^3 < N_1^3 < N_1N_2N_3$ and, hence, $[r^3 \mod N_1N_2N_3] = r^3$ is a cube in \mathbb{Z} . This implies, that an adversary can recover r by simply computing the cube root of $[r^3 \mod N_1N_2N_3]$ in \mathbb{Z} , which can be done efficiently.

- Show a simple way to fix this and get a IND-CPA-secure method that transmits a ciphertext of length $3\ell + \mathcal{O}(n)$ (you do not need to provide a formal proof of IND-CPA security).

Solution: An easy way to fix this is to choose three independent values $r_1, r_2, r_3 \leftarrow \mathbb{Z}_{N_1}^*$ and send the ciphertext

$$(c_1, c_2, c_3, c_4, c_5, c_6) := \begin{pmatrix} [r_1^3 \mod N_1], & [r_2^3 \mod N_2], & [r_3^3 \mod N_3], \\ H(r_1) \oplus m, & H(r_2) \oplus m, & H(r_3) \oplus m \end{pmatrix}.$$

- Show a better approach that is still IND-CPA-secure but with a ciphertext of length $\ell + \mathcal{O}(n)$ (you do not need to provide a formal proof of IND-CPA security).

Solution: An easy approach would be to simply use a larger exponent e, e.g., a uniformly random e. Although there is no explicit attack known, there doesn't seem to be a simple proof from RSA either. Thus, we will follow a different approach based on hybrid encryption: Let (Enc, Dec) be a CPA-secure private-key encryption scheme and $H: \mathbb{Z}_{N_1}^* \to \{0, 1\}^n$ a random oracle. To send the message $m \in \{0, 1\}^{\ell}$, choose four independent values $r_1, r_2, r_3 \leftarrow \mathbb{Z}_{N_1}^*$, and $k \leftarrow \{0, 1\}^n$, and send the ciphertext

$$(c_1, c_2, c_3, c_4, c_5, c_6, c_7) := \begin{pmatrix} [r_1^3 \mod N_1], & [r_2^3 \mod N_2], & [r_3^3 \mod N_3], \\ H(r_1) \oplus k, & H(r_2) \oplus k, & H(r_3) \oplus k, & \mathsf{Enc}_k(m) \end{pmatrix}.$$