Solutions to Homework 10

Lecturer: Daniel Slamanig, TA: Karen Klein

- 1. DL-related Problems
 - [8.15 in book, 2nd edition] Prove that hardness of the CDH problem relative to \mathcal{G} implies hardness of the discrete-logarithm problem relative to \mathcal{G} , and that hardness of the DDH problem relative to \mathcal{G} implies hardness of the CDH problem relative to \mathcal{G} .

Solution: Let $(G, q, g) \leftarrow \mathcal{G}(1^n)$, where G is a cyclic group of order q with bit-size ||q|| = O(n) and g a generator of G.

To prove that hardness of the CDH implies hardness of the discrete-logarithm problem, we show that any algorithm that solves the discrete-logarithm can be used to solve CDH. Let \mathcal{A} be an arbitrary PPT algorithm for the discrete-logarithm problem with respect to \mathcal{G} , i.e., on input (G, q, g, g^x) it outputs $x' \in \mathbb{Z}_q$ and wins the game if $g^{x'} = g^x$, i.e., x' = x.¹ We construct an algorithm \mathcal{A}' for CDH as follows: Given a CDH instance (G, q, g, g^x, g^y) , \mathcal{A}' queries \mathcal{A} on (G, q, g, g^x) and receives $x' \in \mathbb{Z}_q$. Then \mathcal{A}' computes $(g^y)^{x'}$. Clearly, \mathcal{A}' succeeds if and only if \mathcal{A} succeeds: $(g^y)^{x'} = \mathsf{DH}_g(g^x, g^y) \iff x' = x$. Hardness of CDH relative to \mathcal{G} now implies that the success probability of every PPT algorithm – in particular that of \mathcal{A}' – is bounded by some negligible function $\mathsf{negl}(n)$. Thus, we get

$$\Pr[\mathsf{DLog}_{\mathcal{A},\mathcal{G}}(n) = 1] = \Pr[\mathcal{A}'(G,q,g,g^x,g^y) = g^{xy}] \le \mathsf{negl}(n).$$

To prove that CDH is harder than the DDH problem, let \mathcal{A} be an arbitrary PPT algorithm for CDH with respect to \mathcal{G} , i.e., on input (G, q, g, g^x, g^y) it outputs $h \in G$ and wins the game if $h = \mathsf{DH}_g(g^x, g^y) = g^{xy}$. We construct an algorithm \mathcal{A}' for DDH as follows: Given access to \mathcal{A} and a DDH instance (G, q, g, g^x, g^y, h') , where either $h' = g^{xy}$ or $h' = g^z$ for a $z \in \mathbb{Z}_q$ chosen uniformly at random², the algorithm \mathcal{A}' queries \mathcal{A} on (G, q, g, g^x, g^y) and receives h. \mathcal{A}' outputs 1 if h' = h and 0 else. Thus,

$$\Pr[\mathcal{A}'(G, q, g, g^x, g^y, g^{xy}) = 1] = \Pr[\mathcal{A}(G, q, g, g^x, g^y) = g^{xy}]$$

On the other hand,

$$\Pr[\mathcal{A}'(G, q, g, g^x, g^y, g^z) = 1] = \frac{1}{q}.$$

Assuming that DDH is hard with respect to \mathcal{G} , we get

$$\left|\Pr[\mathcal{A}'(G,q,g,g^x,g^y,g^z)=1]-\Pr[\mathcal{A}'(G,q,g,g^x,g^y,g^{xy})=1]\right| \le \mathsf{negl}(n).$$

This implies

$$\Pr[\mathcal{A}(G, q, g, g^x, g^y) = g^{xy}] \le \operatorname{\mathsf{negl}}(n) + \frac{1}{2}$$

which is negligible since ||q|| = n. This proves hardness of CDH.

¹Note, $g^{x'} = g^x$ implies x' = x, since for any generator g of G the map $(\mathbb{Z}_q, +) \to (G, \cdot), x \mapsto g^x$ is an isomorphism. ²Note, if z is chosen uniformly at random from \mathbb{Z}_q this implies that g^z is uniformly random in G.

• [8.19 in book, 2nd edition] Can the following problem be solved in polynomial time? Given a prime p, a value $x \in \mathbb{Z}_{p-1}^*$, and $y := [g^x \mod p]$ (where g is a uniform value in \mathbb{Z}_p^*), find g, i.e., compute $y^{1/x} \mod p$. If your answer is "yes", give a polynomial-time algorithm. If your answer is "no", show a reduction to one of the assumptions introduced in lecture 10.

Solution: Yes, the above problem can be solved in polynomial time as follows: As shown in HW9, exercise 2c, the extended Euclidean algorithm can be used to compute the inverse 1/x of $x \in \mathbb{Z}_{p-1}^*$. Hence, we can compute $g = y^{1/x} \mod p$.

• Let G be a cyclic group of prime order q and g a generator. The square Diffie-Hellman (sq-DH) problem is given (G, q, g, g^a) for $a \in \mathbb{Z}_q^*$ to compute g^{a^2} . Show that sq-DH \iff CDH (Hint: $(x + y)^2$).

Solution: First, we show that hardness of sq-DH implies hardness of CDH: Let \mathcal{A} be an arbitrary PPT algorithm for CDH. We construct an algorithm \mathcal{A}' for sq-DH as follows: Given an sq-DH instance (G, q, g, g^a) , the algorithm \mathcal{A}' chooses $r_1, r_2 \in \mathbb{Z}_q$ uniformly at random and queries \mathcal{A} on $(G, q, g, (g^a)^{r_1}, (g^a)^{r_2})$. Note that $x = ar_1, y = ar_2$ are uniformly distributed in \mathbb{Z}_q , so $(G, q, g, g^{ar_1}, g^{ar_2})$ is a valid CDH instance. After receiving some value h from \mathcal{A} , the algorithm \mathcal{A}' outputs $h' := h^{1/(r_1r_2)}$ if r_1r_2 is invertible in \mathbb{Z}_q , otherwise it outputs some uniformly random $h' \in G$. Clearly, if \mathcal{A} succeeds and $r_1r_2 \in \mathbb{Z}_q^*$, then $g^{a^2r_1r_2/(r_1r_2)} = g^{a^2}$ is a solution to sq-DH. More precisely, if $r_1r_2 \in \mathbb{Z}_q^*$, then \mathcal{A}' succeeds if and only if \mathcal{A} succeeds. Thus, we can compute the success probability of \mathcal{A}' as follows:

$$\begin{aligned} \Pr[\mathcal{A}'(G,q,g,g^{a}) &= g^{a^{2}}] &= & \Pr[\mathcal{A}(G,q,g,g^{ar_{1}},g^{ar_{2}}) = g^{a^{2}r_{1}r_{2}}] \cdot \Pr[r_{1}r_{2} \in \mathbb{Z}_{q}^{*}] \\ &+ \Pr[h' = g^{a^{2}}] \cdot \Pr[r_{1}r_{2} \notin \mathbb{Z}_{q}^{*}] \\ &= & \Pr[\mathcal{A}(G,q,g,g^{x},g^{y}) = g^{xy}] \cdot \frac{(q-1)^{2}}{q^{2}} + \frac{1}{q} \cdot (\frac{2}{q} - \frac{1}{q^{2}}) \end{aligned}$$

If the sq-DH assumption holds, i.e., sq-DH is hard with respect to the group generator \mathcal{G} , by definition there exists a negligible function negl such that

$$\Pr[\mathcal{A}'(G,q,g,g^a) = g^{a^2}] \le \operatorname{negl}(n)$$

and by the above it follows

$$\Pr[\mathcal{A}(G,q,g,g^{x},g^{y}) = g^{xy}] \leq \frac{q^{2}}{(q-1)^{2}} \cdot (\operatorname{negl}(n) - \frac{1}{q} \cdot (\frac{2}{q} - \frac{1}{q^{2}})),$$

which is negligible. Since ||q|| = n and \mathcal{A} was an arbitrary algorithm for CDH, this implies hardness of CDH.

To prove equivalence of sq-DH and CDH, we still have to prove that hardness of CDH implies hardness of sq-DH, i.e., that CDH can be solved using any algorithm \mathcal{A} for sq-DH. To this aim, let \mathcal{A} be an arbitrary PPT algorithm for sq-DH, (G, q, g, g^x, g^y) be an instance of CDH and note that $(x + y)^2 = x^2 + y^2 + 2xy$. We construct an algorithm \mathcal{A}' for CDH as follows: If $g^x = 1$ or $g^y = 1$ then it must hold x = 0 or y = 0 and \mathcal{A}' outputs the correct solution $1 = g^0 = g^{xy}$, i.e., \mathcal{A}' succeeds with probability 1 in this case. If $g^x, g^y \neq 1$ but $g^x g^y = 1$ (i.e., $x + y = 0 \mod q$), then \mathcal{A}' queries \mathcal{A} on (G, q, g, g^x) .

After receiving h from \mathcal{A} , the algorithm \mathcal{A}' outputs h^{-1} . Note, that if \mathcal{A} succeeds, then $h = g^{x^2}$ and \mathcal{A}' succeeds since $y = -x \mod q$. Hence, \mathcal{A}' has the same success probability as \mathcal{A} in this case. Finally, if $g^x, g^y, g^x g^y \neq 1$, then \mathcal{A}' chooses $r \in \mathbb{Z}_q^*$ uniformly at random and queries \mathcal{A} three times to obtain $h_1 = \mathcal{A}(G, q, g, g^x), h_2 = \mathcal{A}(G, q, g, g^y)$ and $h_3 = \mathcal{A}(G, q, g, (g^x g^y)^r)$. Then \mathcal{A}' computes $1/2 \mod q$ and $1/(2r^2) \mod q$ (note that both 2 and r are invertible modulo q) and outputs $h' = h_3^{1/(2r^2)}(h_1h_2)^{-1/2}$. If \mathcal{A} succeeds on all three instances, then $h_1 = g^{x^2}, h_2 = g^{y^2}$ and $h_3 = g^{(r(x+y))^2}$, so it follows

$$h' = h_3^{1/(2r^2)}(h_1h_2)^{-1/2} = (g^{r^2(x+y)^2})^{1/(2r^2)}(g^{x^2}g^{y^2})^{-1/2} = g^{((x+y)^2 - x^2 - y^2)/2} = g^{xy}.$$

Since \mathcal{A} is queried on three independent looking properly distributed sq-DH instances, we can lower-bound the success probability of \mathcal{A}' as follows:

$$\Pr[\mathcal{A}'(G,q,g,g^x,g^y) = g^{xy}] \ge (\Pr[\mathcal{A}(G,q,g,g^x) = g^{x^2}])^3.$$

If CDH is hard, it hold $\Pr[\mathcal{A}'(G, q, g, g^x, g^y) = g^{xy}] \leq \operatorname{negl}(n)$. Thus, we get

$$\Pr[\mathcal{A}(G, q, g, g^x) = g^{x^2}] \le (\operatorname{negl}(n))^{1/3}$$

which is negligible. Thus, we proved hardness of sq-DH.

2. Key-Exchange

• Let p be a prime and g be a generator of \mathbb{Z}_p^* . Argue why we are not able to prove $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}$ security of the Diffie Hellman key-exchange protocol in this setting. Construct a polynomial-time distinguisher (Hint: quadratic residues).

Solution: The clue for breaking security of $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}$ over \mathbb{Z}_p^* is to consider the subgroup $QR_p \leq \mathbb{Z}_p^*$ of quadratic residues mod p.

Recall, $y \in \mathbb{Z}_p^*$ is called a *quadratic residue modulo* p if there exists an $x \in \mathbb{Z}_p^*$ such that $x^2 = y \mod p$; such an x is then called a *square root* of y. It can be shown that each quadratic residue modulo p has precisely two distinct square roots, namely x and its additive inverse -x in \mathbb{Z}_p (which also lies in \mathbb{Z}_p^*). If we denote the set of quadratic residues as QR_p , it is easy to see that QR_p forms a subgroup and $QR_p = \{g^{2i} \mid i \in \{0, \ldots, \frac{p-1}{2}\}\}$. In particular, $|QR_p| = \frac{p-1}{2} = \frac{|\mathbb{Z}_p^*|}{2}$. Furthermore, there is an efficient algorithm to compute quadratic residuosity as

$$\mathcal{J}_p(x) := x^{\frac{p-1}{2}} = \begin{cases} +1 & \text{if } x \in QR_p \\ -1 & \text{if } x \notin QR_p. \end{cases}$$

 $\mathcal{J}_p(x)$ is called the Jacobi (or Legendre) symbol.

In the $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(b)$ security game, an adversary \mathcal{A} knows the public parameters $(\mathbb{Z}_p^*, p - 1, g) \leftarrow \mathcal{G}(1^n)$ as well as a tuple $(k^*, trans)$ with $trans = (g^x, g^y)$ for some uniformly random secret $x, y \in \mathbb{Z}_{p-1}^*$. If b = 0 then $k^* = \mathsf{DH}_g(g^x, g^y) = g^{xy}$, otherwise k^* is a uniformly random element in \mathbb{Z}_p^* . The adversary \mathcal{A} wins the game if he can guess the bit b with non-negligible probability.

PS10-3

Now, consider the case b = 1 where $k^* \leftarrow \mathbb{Z}_p^*$ is uniformly random. Then $k^* \in QR_p$ with probability $\frac{1}{2}$. On the other hand, if b = 0, then $k^* = g^{xy}$ where $x, y \leftarrow \mathbb{Z}_{p-1}$ are chosen independently and uniformly at random. It holds $k^* \in QR_p$ if and only if $xy \mod p - 1$ is even, i.e., x or y is even, which happens with probability $1 - \Pr[x \text{ odd } \land y \text{ odd}] = \frac{3}{4}$. We use this observation to construct an efficient adversary \mathcal{A} against $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(b)$: On input $(\mathbb{Z}_p^*, p-1, g, k^*, trans), \mathcal{A}$ computes $\mathcal{J}_p(k^*)$. If $\mathcal{J}_p(k^*) = +1$, he outputs b' = 0, if $\mathcal{J}_p(k^*) = -1$ he outputs b' = 1. \mathcal{A} wins the game with probability

$$\begin{array}{ll} \mathsf{Pr}[b'=b] &= \mathsf{Pr}[b'=b|b=0] \cdot \mathsf{Pr}[b=0] + \mathsf{Pr}[b'=b|b=1] \cdot \mathsf{Pr}[b=1] \\ &= \frac{1}{2}(\mathsf{Pr}[b'=0|b=0] + \mathsf{Pr}[b'=1|b=1]) \\ &= \frac{1}{2}(\frac{3}{4} + \frac{1}{2}) = \frac{5}{8} > \frac{1}{2} + \mathsf{negl}(n). \end{array}$$

Note, the adversary \mathcal{A} above does not even use the information in the transcript $trans = (g^x, g^y)$ to break the scheme. One can improve the attack as follows. It holds

$$g^{xy} \in QR_p \iff (x = 0 \mod 2 \lor y = 0 \mod 2) \iff g^x \in QR_p \lor g^y \in QR_p.$$

We construct an adversary \mathcal{A}' as follows. \mathcal{A}' computes $\mathcal{J}_p(g^x), \mathcal{J}_p(g^y), \mathcal{J}_p(k^*)$ to decide whether g^x, g^y, k^* are quadratic residues. Then he defines bits b_x, b_y, b^* as

$$b_x = \begin{cases} 0 & \text{if } x \notin QR_p \\ 1 & \text{if } x \in QR_p. \end{cases} \quad b_y = \begin{cases} 0 & \text{if } y \notin QR_p \\ 1 & \text{if } y \in QR_p. \end{cases} \quad b^* = \begin{cases} 0 & \text{if } k^* \notin QR_p \\ 1 & \text{if } k^* \in QR_p. \end{cases}$$

Finally, \mathcal{A}' outputs b' = 0 if $b^* = b_x \vee b_y$ and b' = 1 else. Now, consider the case b = 0, i.e., $k^* = g^{xy}$. Then $b^* = b_x \vee b_y$ and \mathcal{A}' will output b' = 0 = b with probability 1. In the case b = 1, on the other hand, k^* will be uniformly random. In this case, the probability of k^* being a quadratic residue or nonresidue is $\frac{1}{2}$, respectively. This means that the bit b^* is uniformly random and independent of b_x, b_y . Hence, with probability $\frac{1}{2}$ it will hold $b^* = b_x \vee b_y$. It follows that \mathcal{A}' wins the game $\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(b)$ with probability

$$\begin{aligned} \mathsf{Pr}[b'=b] &= \mathsf{Pr}[b'=0|b=0] \cdot \mathsf{Pr}[b=0] + \mathsf{Pr}[b'=1|b=1] \cdot \mathsf{Pr}[b=1] \\ &= \frac{1}{2}(\mathsf{Pr}[b^*=b_x \lor b_y|b=0] + \mathsf{Pr}[b^*=b_x \lor b_y|b=1]) \\ &= \frac{1}{2}(1+\frac{1}{2}) = \frac{3}{4}. \end{aligned}$$