Modern Cryptography January 7, 2019

Solutions to Homework 10

Lecturer: Daniel Slamanig, TA: Karen Klein

1. DL-related Problems

e [8.15 in book, 2nd edition]| Prove that hardness of the CDH problem relative to G
implies hardness of the discrete-logarithm problem relative to G, and that hardness of
the DDH problem relative to G implies hardness of the CDH problem relative to G.

Solution: Let (G,q,g9) + G(1"), where G is a cyclic group of order ¢ with bit-size
llg|| = O(n) and g a generator of G.

To prove that hardness of the CDH implies hardness of the discrete-logarithm problem,
we show that any algorithm that solves the discrete-logarithm can be used to solve CDH.
Let A be an arbitrary PPT algorithm for the discrete-logarithm problem with respect
to G, i.e., on input (G,q,g,¢") it outputs 2’ € Z, and wins the game if gx/ = g%, ie.,
' = x.! We construct an algorithm A’ for CDH as follows: Given a CDH instance
(G,¢,9,9%,9Y), A" queries A on (G,q,g,9") and receives =’ € Z;. Then A’ computes
(g¥)*". Clearly, A’ succeeds if and only if A succeeds: (g¥)* = DHy(g%, ¢¥) <= 2’ = .
Hardness of CDH relative to G now implies that the success probability of every PPT
algorithm — in particular that of A’ — is bounded by some negligible function negl(n).
Thus, we get

Pr[DLog 4 g(n) = 1] = PrlA'(G.q,9.9", 9") = g™] < negl(n).

To prove that CDH is harder than the DDH problem, let A be an arbitrary PPT al-
gorithm for CDH with respect to G, i.e., on input (G, q, g, g%, g¥) it outputs h € G and
wins the game if h = DHy(g%, g¥) = ¢™¥. We construct an algorithm A’ for DDH as
follows: Given access to A and a DDH instance (G, ¢, g, g%, gV, h'), where either b’ = ¢g*¥
or h' = g¢* for a z € Z; chosen uniformly at random?, the algorithm A’ queries A on
(G,q,9,9"%,9"Y) and receives h. A’ outputs 1 if b’ = h and 0 else. Thus,
PrlA'(G.q,9,9", ¢, 9") = 1] = PrlA(G, ¢, 9, 9", 9") = "]
On the other hand,

1
Pr[A/(G7Q)gagx)gyvgz) = 1] = &

Assuming that DDH is hard with respect to G, we get

|PrlA'(G,q,9,9"%, 9%, 9°) = 1] — PrlA(G,q,9,4%, 9", ") = 1]| < negl(n).
This implies
1
PrlA(G,q,9,9%,9Y) = g*¥] < negl(n) + q’

which is negligible since ||¢|| = n. This proves hardness of CDH. L]

'Note, gz/ = ¢” implies 2’ = z, since for any generator g of G the map (Z4, +) — (G, +),  — ¢ is an isomorphism.
*Note, if z is chosen uniformly at random from Z, this implies that ¢* is uniformly random in G.
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e [8.19 in book, 2nd edition]| Can the following problem be solved in polynomial time?
Given a prime p, a value z € Z}_, and y := [¢* mod p] (where ¢ is a uniform value in

p—1
Z;), find g, i.e., compute y*/* mod p. If your answer is “yes”, give a polynomial-time
algorithm. If your answer is “no”, show a reduction to one of the assumptions introduced

in lecture 10.

Solution: Yes, the above problem can be solved in polynomial time as follows: As
shown in HW9, exercise 2c, the extended Euclidean algorithm can be used to compute
the inverse 1/z of z € Z,_,. Hence, we can compute g = y** mod p. L]

e Let G be a cyclic group of prime order ¢ and g a generator. The square Diffie-Hellman
(sq-DH) problem is given (G, g, g, g) for a € Z; to compute ¢%°. Show that sq-DH <>
CDH (Hint: (x + y)?).

Solution: First, we show that hardness of sq-DH implies hardness of CDH: Let A be an
arbitrary PPT algorithm for CDH. We construct an algorithm A’ for sq-DH as follows:
Given an sq-DH instance (G, ¢, g,¢%), the algorithm A’ chooses 71,72 € Z, uniformly
at random and queries A on (G,q,g,(9*)"™,(9*)"). Note that x = ari,y = ary are
uniformly distributed in Z, so (G, q, g, g*"*, g°"?) is a valid CDH instance. After receiving
some value h from A, the algorithm A’ outputs &' := h'/("172) if riry is invertible in
Zq, otherwise it outputs some uniformly random b’ € G. Clearly, if A succeeds and
r1r9 € Zy, then g“QT”?/(””) = g“2 is a solution to sq-DH. More precisely, if rire € Zg,
then A’ succeeds if and only if A succeeds. Thus, we can compute the success probability
of A" as follows:

PrlA(G.q,9,9%) = g”'] = PrlA(G,q, 9,9, 9"2) = g*"172] - Pr[riry € Z]
+Pr[h = ¢°°] - Pr[riry & Z,]
—1)2
= PrlA(G,q,9.9%,¢") = g™]- U3 b+ 12— L

If the sq-DH assumption holds, i.e., sq-DH is hard with respect to the group generator
G, by definition there exists a negligible function negl such that

PrlA'(G, q,9,9%) = g°] < negl(n)

and by the above it follows

1 2

PrLA(G.0.0.9%.8%) = 7] < 5y - (negl() — = - C = )
which is negligible. Since ||g|| = n and A was an arbitrary algorithm for CDH, this
implies hardness of CDH.

To prove equivalence of sq-DH and CDH, we still have to prove that hardness of CDH
implies hardness of sq-DH, i.e., that CDH can be solved using any algorithm A for sqg-
DH. To this aim, let A be an arbitrary PPT algorithm for sq-DH, (G, ¢, ¢, 9", ¢Y) be an
instance of CDH and note that (z + y)? = 2% + y? + 2zy. We construct an algorithm
A’ for CDH as follows: If ¢* = 1 or ¢ = 1 then it must hold x = 0 or y = 0 and A’
outputs the correct solution 1 = ¢° = ¢®, i.e., A’ succeeds with probability 1 in this
case. If g7, g¥ # 1 but g*¢¥ =1 (i.e., z+y = 0 mod q), then A’ queries A on (G, q, 9, g*).
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After receiving h from A, the algorithm A’ outputs h~'. Note, that if .4 succeeds, then
h= g“2 and A’ succeeds since y = —z mod ¢q. Hence, A’ has the same success probability
as A in this case. Finally, if g%, ¢¥,¢9%¢Y # 1, then A’ chooses r € Zy uniformly at
random and queries A three times to obtain hy = A(G,q,g,9%), he = A(G,q,9,¢Y)
and hy = A(G,q,9,(¢%g¥)"). Then A’ computes 1/2 mod ¢ and 1/(2r?) mod ¢ (note
that both 2 and r are invertible modulo ¢) and outputs h' = hé/(Qﬂ)(hlhg)*l/Q. If A
succeeds on all three instances, then h; = g$2, ho = ng and hz = g(”(:“'y))Q, so it follows

B = hzl‘)/(Qrz)(hth)fl/2 _ (gr2(95+y)2)1/(2r2)(g:vzng)fl/Z _ g((:p+y)27127y2)/2 — gzvy'

Since A is queried on three independent looking properly distributed sq-DH instances,
we can lower-bound the success probability of A’ as follows:

2

PrlA'(G,q,9,9", ¢") = g*¥] > (PrlA(G, q,9,9%) = g" ])°.

If CDH is hard, it hold Pr[A'(G, q, g, 9%, %) = g"Y] < negl(n). Thus, we get
2
PrlA(G,4,9,9") = 9" ] < (negl(n))"/?

which is negligible. Thus, we proved hardness of sq-DH.

2. Key-Exchange

e Let p be a prime and g be a generator of Z;. Argue why we are not able to prove

P/(TE:%::—I security of the Diffie Hellman key-exchange protocol in this setting. Construct a
polynomial-time distinguisher (Hint: quadratic residues).

Solution: The clue for breaking security of Rl\fjvn over Zj, is to consider the subgroup
QR), < Z, of quadratic residues mod p.

Recall, y € Zj is called a quadratic residue modulo p if there exists an x € Z; such
that 22 = y mod p; such an z is then called a square root of y. It can be shown that
each quadratic residue modulo p has precisely two distinct square roots, namely x and its
additive inverse —z in Z, (which also lies in Zj). If we denote the set of quadratic residues
as QR,, it is easy to see that QR, forms a subgroup and QR, = {¢* | i € {0,..., %}}
In particular, |QR,| = % = @.
compute quadratic residuosity as

Furthermore, there is an efficient algorithm to

=1 [ +1 ifxe @R,
| -1 ifz € QR,.

Jp(z) is called the Jacobi (or Legendre) symbol.

In the @j\h(b) security game, an adversary A knows the public parameters (Zj,p —
1,9) < G(1™) as well as a tuple (k*,trans) with trans = (g%, ¢¥) for some uniformly
random secret z,y € Z; ;. If b = 0 then k* = DHy(¢%, ¢¥) = ¢g*¥, otherwise k* is a
uniformly random element in Z7. The adversary A wins the game if he can guess the
bit b with non-negligible probability.
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Now, consider the case b =1 where k* < Z; is uniformly random. Then k* € QR), with
probability % On the other hand, if b = 0, then k* = ¢*¥ where x,y < Z,_1 are chosen
independently and uniformly at random. It holds £* € QR,, if and only if zy mod p — 1
is even, i.e., x or y is even, which happens with probability 1 — Pr[zodd A yodd] =
We use this observation to construct an efficient adversary .4 against R\Ej\{—[(b)
On input (Z,p—1,g,k*, trans), A computes Jp(k*). If J,,(k*) = 41, he outputs b’ = 0,
if J,(k*) = —1 he outputs b’ = 1. A wins the game with probability
Prt’ = b) Pr[t/ = blb = 0] - Pr[b = 0] + Pr[t/ = b|b = 1] - Pr[b = 1]
= %(Pr[b’ = 0|b = ] + Prit) = 1b=1))
=3(343)=2>1+negl(n).
Note, the adversary A above does not even use the information in the transcript trans =
(g%, 9Y) to break the scheme. One can improve the attack as follows. It holds

gY €QR, <= (r=0mod2Vy=0mod?2) <= ¢" € QR,V ¢’ € QR,.

We construct an adversary A’ as follows. A" computes J,(9%), Jp(9Y), Tp(k*) to decide
whether g%, g¥, k* are quadratic residues. Then he defines bits b;, b, b* as

, _ 0 ifedQR, [0 ifygQR, . _ [0 ifk¢QR,
©=\1 ifzeQR, Y |1 ifycQR, =\ 1 ifk*€QR,.

Finally, A" outputs ¥’ = 0 if b* = b, V b, and b’ = 1 else. Now, consider the case b = 0,
ie., k* = ¢g"¥. Then b* = b, Vb, and A" will output b’ = 0 = b with probability 1. In the
case b = 1, on the other hand, £* will be uniformly random. In this case, the probability
of £* being a quadratic residue or nonresidue is %, respectively. This means that the bit
b* is uniformly random and independent of b, b,. Hence, with probability % it will hold

b* = b, V by. It follows that A’ wins the game R\Ejvn(b) with probability

P/ =b] =Pr[t/ =0[b=0]-Pr[b=0]+Pr[t/ = 1]b=1] - Pr[b = 1]
(Prlb" = by V bylb = 0] + Prlb” = by V by b = 1))
(1+

) 3

rol—r0l—= T
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