
Modern Cryptography January 7, 2019

Solutions to Homework 10

Lecturer: Daniel Slamanig, TA: Karen Klein

1. DL-related Problems

• [8.15 in book, 2nd edition] Prove that hardness of the CDH problem relative to G
implies hardness of the discrete-logarithm problem relative to G, and that hardness of
the DDH problem relative to G implies hardness of the CDH problem relative to G.

Solution: Let (G, q, g) ← G(1n), where G is a cyclic group of order q with bit-size
||q|| = O(n) and g a generator of G.

To prove that hardness of the CDH implies hardness of the discrete-logarithm problem,
we show that any algorithm that solves the discrete-logarithm can be used to solve CDH.
Let A be an arbitrary PPT algorithm for the discrete-logarithm problem with respect
to G, i.e., on input (G, q, g, gx) it outputs x′ ∈ Zq and wins the game if gx

′
= gx, i.e.,

x′ = x.1 We construct an algorithm A′ for CDH as follows: Given a CDH instance
(G, q, g, gx, gy), A′ queries A on (G, q, g, gx) and receives x′ ∈ Zq. Then A′ computes
(gy)x

′
. Clearly, A′ succeeds if and only if A succeeds: (gy)x

′
= DHg(gx, gy) ⇐⇒ x′ = x.

Hardness of CDH relative to G now implies that the success probability of every PPT
algorithm – in particular that of A′ – is bounded by some negligible function negl(n).
Thus, we get

Pr[DLogA,G(n) = 1] = Pr[A′(G, q, g, gx, gy) = gxy] ≤ negl(n).

To prove that CDH is harder than the DDH problem, let A be an arbitrary PPT al-
gorithm for CDH with respect to G, i.e., on input (G, q, g, gx, gy) it outputs h ∈ G and
wins the game if h = DHg(gx, gy) = gxy. We construct an algorithm A′ for DDH as
follows: Given access to A and a DDH instance (G, q, g, gx, gy, h′), where either h′ = gxy

or h′ = gz for a z ∈ Zq chosen uniformly at random2, the algorithm A′ queries A on
(G, q, g, gx, gy) and receives h. A′ outputs 1 if h′ = h and 0 else. Thus,

Pr[A′(G, q, g, gx, gy, gxy) = 1] = Pr[A(G, q, g, gx, gy) = gxy]

On the other hand,

Pr[A′(G, q, g, gx, gy, gz) = 1] =
1

q
.

Assuming that DDH is hard with respect to G, we get

|Pr[A′(G, q, g, gx, gy, gz) = 1]− Pr[A′(G, q, g, gx, gy, gxy) = 1]| ≤ negl(n).

This implies

Pr[A(G, q, g, gx, gy) = gxy] ≤ negl(n) +
1

q
,

which is negligible since ||q|| = n. This proves hardness of CDH.

1Note, gx
′
= gx implies x′ = x, since for any generator g of G the map (Zq,+)→ (G, ·), x 7→ gx is an isomorphism.

2Note, if z is chosen uniformly at random from Zq this implies that gz is uniformly random in G.

PS10-1

• [8.19 in book, 2nd edition] Can the following problem be solved in polynomial time?
Given a prime p, a value x ∈ Z∗p−1, and y := [gx mod p] (where g is a uniform value in

Z∗p), find g, i.e., compute y1/x mod p. If your answer is “yes”, give a polynomial-time
algorithm. If your answer is “no”, show a reduction to one of the assumptions introduced
in lecture 10.

Solution: Yes, the above problem can be solved in polynomial time as follows: As
shown in HW9, exercise 2c, the extended Euclidean algorithm can be used to compute
the inverse 1/x of x ∈ Z∗p−1. Hence, we can compute g = y1/x mod p.

• Let G be a cyclic group of prime order q and g a generator. The square Diffie-Hellman
(sq-DH) problem is given (G, q, g, ga) for a ∈ Z∗q to compute ga

2
. Show that sq-DH ⇐⇒

CDH (Hint: (x + y)2).

Solution: First, we show that hardness of sq-DH implies hardness of CDH: Let A be an
arbitrary PPT algorithm for CDH. We construct an algorithm A′ for sq-DH as follows:
Given an sq-DH instance (G, q, g, ga), the algorithm A′ chooses r1, r2 ∈ Zq uniformly
at random and queries A on (G, q, g, (ga)r1 , (ga)r2). Note that x = ar1, y = ar2 are
uniformly distributed in Zq, so (G, q, g, gar1 , gar2) is a valid CDH instance. After receiving
some value h from A, the algorithm A′ outputs h′ := h1/(r1r2) if r1r2 is invertible in
Zq, otherwise it outputs some uniformly random h′ ∈ G. Clearly, if A succeeds and

r1r2 ∈ Z∗q , then ga
2r1r2/(r1r2) = ga

2
is a solution to sq-DH. More precisely, if r1r2 ∈ Z∗q ,

then A′ succeeds if and only if A succeeds. Thus, we can compute the success probability
of A′ as follows:

Pr[A′(G, q, g, ga) = ga
2
] = Pr[A(G, q, g, gar1 , gar2) = ga

2r1r2] · Pr[r1r2 ∈ Z∗q]
+Pr[h′ = ga

2
] · Pr[r1r2 6∈ Z∗q]

= Pr[A(G, q, g, gx, gy) = gxy] · (q−1)2

q2
+ 1

q · (
2
q −

1
q2

)

If the sq-DH assumption holds, i.e., sq-DH is hard with respect to the group generator
G, by definition there exists a negligible function negl such that

Pr[A′(G, q, g, ga) = ga
2
] ≤ negl(n)

and by the above it follows

Pr[A(G, q, g, gx, gy) = gxy] ≤ q2

(q − 1)2
· (negl(n)− 1

q
· (2

q
− 1

q2
)),

which is negligible. Since ||q|| = n and A was an arbitrary algorithm for CDH, this
implies hardness of CDH.

To prove equivalence of sq-DH and CDH, we still have to prove that hardness of CDH
implies hardness of sq-DH, i.e., that CDH can be solved using any algorithm A for sq-
DH. To this aim, let A be an arbitrary PPT algorithm for sq-DH, (G, q, g, gx, gy) be an
instance of CDH and note that (x + y)2 = x2 + y2 + 2xy. We construct an algorithm
A′ for CDH as follows: If gx = 1 or gy = 1 then it must hold x = 0 or y = 0 and A′
outputs the correct solution 1 = g0 = gxy, i.e., A′ succeeds with probability 1 in this
case. If gx, gy 6= 1 but gxgy = 1 (i.e., x+y = 0 mod q), then A′ queries A on (G, q, g, gx).

PS10-2

After receiving h from A, the algorithm A′ outputs h−1. Note, that if A succeeds, then
h = gx

2
and A′ succeeds since y = −x mod q. Hence, A′ has the same success probability

as A in this case. Finally, if gx, gy, gxgy 6= 1, then A′ chooses r ∈ Z∗q uniformly at
random and queries A three times to obtain h1 = A(G, q, g, gx), h2 = A(G, q, g, gy)
and h3 = A(G, q, g, (gxgy)r). Then A′ computes 1/2 mod q and 1/(2r2) mod q (note

that both 2 and r are invertible modulo q) and outputs h′ = h
1/(2r2)
3 (h1h2)−1/2. If A

succeeds on all three instances, then h1 = gx
2
, h2 = gy

2
and h3 = g(r(x+y))2 , so it follows

h′ = h
1/(2r2)
3 (h1h2)−1/2 = (gr

2(x+y)2)1/(2r2)(gx
2
gy

2
)−1/2 = g((x+y)2−x2−y2)/2 = gxy.

Since A is queried on three independent looking properly distributed sq-DH instances,
we can lower-bound the success probability of A′ as follows:

Pr[A′(G, q, g, gx, gy) = gxy] ≥ (Pr[A(G, q, g, gx) = gx
2
])3.

If CDH is hard, it hold Pr[A′(G, q, g, gx, gy) = gxy] ≤ negl(n). Thus, we get

Pr[A(G, q, g, gx) = gx
2
] ≤ (negl(n))1/3

which is negligible. Thus, we proved hardness of sq-DH.

2. Key-Exchange

• Let p be a prime and g be a generator of Z∗p. Argue why we are not able to prove

K̂E
eav

A,Π security of the Diffie Hellman key-exchange protocol in this setting. Construct a
polynomial-time distinguisher (Hint: quadratic residues).

Solution: The clue for breaking security of K̂E
eav

A,Π over Z∗p is to consider the subgroup
QRp ≤ Z∗p of quadratic residues mod p.
Recall, y ∈ Z∗p is called a quadratic residue modulo p if there exists an x ∈ Z∗p such
that x2 = y mod p; such an x is then called a square root of y. It can be shown that
each quadratic residue modulo p has precisely two distinct square roots, namely x and its
additive inverse−x in Zp (which also lies in Z∗p). If we denote the set of quadratic residues

as QRp, it is easy to see that QRp forms a subgroup and QRp = {g2i | i ∈ {0, . . . , p−1
2 }}.

In particular, |QRp| = p−1
2 =

|Z∗p|
2 . Furthermore, there is an efficient algorithm to

compute quadratic residuosity as

Jp(x) := x
p−1
2 =

{
+1 if x ∈ QRp

−1 if x 6∈ QRp.

Jp(x) is called the Jacobi (or Legendre) symbol.

In the K̂E
eav

A,Π(b) security game, an adversary A knows the public parameters (Z∗p, p −
1, g) ← G(1n) as well as a tuple (k∗, trans) with trans = (gx, gy) for some uniformly
random secret x, y ∈ Z∗p−1. If b = 0 then k∗ = DHg(gx, gy) = gxy, otherwise k∗ is a
uniformly random element in Z∗p. The adversary A wins the game if he can guess the
bit b with non-negligible probability.

PS10-3

Now, consider the case b = 1 where k∗ ← Z∗p is uniformly random. Then k∗ ∈ QRp with

probability 1
2 . On the other hand, if b = 0, then k∗ = gxy where x, y ← Zp−1 are chosen

independently and uniformly at random. It holds k∗ ∈ QRp if and only if xy mod p− 1
is even, i.e., x or y is even, which happens with probability 1− Pr[x odd ∧ y odd] = 3

4 .

We use this observation to construct an efficient adversary A against K̂E
eav

A,Π(b):
On input (Z∗p, p−1, g, k∗, trans), A computes Jp(k∗). If Jp(k∗) = +1, he outputs b′ = 0,
if Jp(k∗) = −1 he outputs b′ = 1. A wins the game with probability

Pr[b′ = b] = Pr[b′ = b|b = 0] · Pr[b = 0] + Pr[b′ = b|b = 1] · Pr[b = 1]
= 1

2(Pr[b′ = 0|b = 0] + Pr[b′ = 1|b = 1])
= 1

2(3
4 + 1

2) = 5
8 > 1

2 + negl(n).

Note, the adversary A above does not even use the information in the transcript trans =
(gx, gy) to break the scheme. One can improve the attack as follows. It holds

gxy ∈ QRp ⇐⇒ (x = 0 mod 2 ∨ y = 0 mod 2) ⇐⇒ gx ∈ QRp ∨ gy ∈ QRp.

We construct an adversary A′ as follows. A′ computes Jp(gx),Jp(gy),Jp(k∗) to decide
whether gx, gy, k∗ are quadratic residues. Then he defines bits bx, by, b

∗ as

bx =

{
0 if x 6∈ QRp

1 if x ∈ QRp.
by =

{
0 if y 6∈ QRp

1 if y ∈ QRp.
b∗ =

{
0 if k∗ 6∈ QRp

1 if k∗ ∈ QRp.

Finally, A′ outputs b′ = 0 if b∗ = bx ∨ by and b′ = 1 else. Now, consider the case b = 0,
i.e., k∗ = gxy. Then b∗ = bx∨ by and A′ will output b′ = 0 = b with probability 1. In the
case b = 1, on the other hand, k∗ will be uniformly random. In this case, the probability
of k∗ being a quadratic residue or nonresidue is 1

2 , respectively. This means that the bit
b∗ is uniformly random and independent of bx, by. Hence, with probability 1

2 it will hold

b∗ = bx ∨ by. It follows that A′ wins the game K̂E
eav

A,Π(b) with probability

Pr[b′ = b] = Pr[b′ = 0|b = 0] · Pr[b = 0] + Pr[b′ = 1|b = 1] · Pr[b = 1]
= 1

2(Pr[b∗ = bx ∨ by|b = 0] + Pr[b∗ = bx ∨ by|b = 1])
= 1

2(1 + 1
2) = 3

4 .

PS10-4

