
Daniel Slamanig

Modern Cryptography: Lecture 9
The Public Key Revolution I/II

2/32

Who am I?

● I work as a scientist in the cryptography group at AIT in Vienna
– Previously PostDoc and Senior Researcher at TU Graz

● AIT is Austria's largest Research and Technology Organization (RTO)
– about 1.300 employees

● We offer internships, master and PhD student projects/supervision

3/32

Organizational

● Where to find the slides and homework?
– https://danielslamanig.info/ModernCrypto19

● How to contact me?
– daniel.slamanig@ait.ac.at

● Tutors: Frederick Klinser, Karen Klein
– e11776880@student.tuwien.ac.at; karen.klein@ist.ac.at

● Official page at TU, Location etc.
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid=41

7&courseNr=192062&semester=2019W

● Tutorial, TU site
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid=24

6&courseNr=192063

● Exam for the second part: Thursday 30.01.2020 15:00-17:00 (Tutorial slot)
– No tutorial this week → exam for first part

https://danielslamanig.info/ModernCrypto19
mailto:daniel.slamanig@ait.ac.at
mailto:e11776880@student.tuwien.ac.at
mailto:karen.klein@ist.ac.at
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid=417&courseNr=192062&semester=2019W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid=417&courseNr=192062&semester=2019W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid=246&courseNr=192063
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid=246&courseNr=192063

4/32

Outlook – Second Part

● Now we are switching to public key cryptography
● What will be covered?

– Some basic computational number theory

– Key exchange protocols

– Public key encryption

– Digital signatures

– Selected Topics

● Invited Lecture (Dr. Christoph Striecks – AIT) – 28.01.2020
– Advanced public key encryption (identity-based encryption

and attribute-based encryption)

● The lecture next week will be held by Karen Klein

Some of the slides are inspired by Mihir Bellare’s Introduction to Modern Cryptography (CSE107) at UCSD

5/32

Recap: Symmetric Cryptography

Key k Key k

Insecure channel

Confidential & authentic message
exchange

How to safely agree on the key k?

6/32

Agreeing on a common key?

● Use another channel where we can be sure there “is” no eavesdropper

● Meeting in person?
– “red phone” connecting Moscow

and Washington in the 1960s

– Exchange using briefcases full of
prints for one-time pad encryption

● Does not “really” scale well
– Costs, delay, ...

Quantum Key Distribution (QKD)

https://www.techrepublic.com/blog/it-security/how-quantum-cryptography-works-and-by-the-way-its-breakable/

7/32

Scaling to Large Networks: N2 Problem

k1

k2

k3

k4

● Each of the N parties will have to store N-1 keys securely
● Cumbersone key management (update in case of loss of keys, etc.)
● Open systems?

8/32

A Partial Solution – Key Distribution Center (KDC)

● Add a trusted party (KDC) which shares a key with each party (N keys instead of N2)
● Key updates easier, but not scalable to open systems; single point of attack
● Commonly used in closed systems (Kerberos, etc.)

Key distribution center (KDC)

kA kB kC

kA

kB

kC

MackA(“A to C”)
1

EnckA(k), EnckC(k)

2

“lets talk”, EnckC(k)

3

9/32

The Public Key Revolution

Whitfield Diffie Martin Hellman Ralph Merkle

Diffie & Hellman won ACM A.M. Turing
Award 2015* for fundamental contri-
butions to modern cryptography
* “Nobel Prize of computing”

Some guys from the British signals intelligence agency (GCHQ) were even faster!

10/32

Key Exchange over Insecure Channels

● Achieve private communication without ever communicating over a
private channel (e.g., meet personally to exchange keys)!

● Use of asymmetry in certain actions: actions that are easy to
compute in one direction, but not easily reversed (one-way)

● We discuss secure key-exchange protocols à la Diffie-Hellman (or
Diffie–Hellman–Merkle to be fair)

Authenticated channel

Eavesdropping (=passive) adversary

Key agreement (no prior secrets); confidential message exchange

11/32

Key Exchange – Practical Relevance

Key exchange using elliptic curve DH

Authenticate channel using RSA signatures (PKCS#1 v1.5)

AES-256 in Galois/Counter Mode and SHA-
384 as hash algorithm in HMAC

Protocol version

TLS 1.3

12/32

Key Exchange - Setting

● Let us consider a two-party key-exchange (KE) protocol Π

n-bit key k

...

m1

m2

ml

trans :=(m1,m2,...ml)

Transcript of conversation Exchanged secret key

13/32

Key Exchange - Security Definition

A key-exchange protocol Π is secure in the presence of an eavesdropper
if for every PPT adversary A

Pr[b = b*] ≤ ½ + negl(n)

14/32

Abstract Diffie–Hellman(–Merkle) KE Protocol

What do we want from such a protocol?

– KA = KB so that both end up with the same shared key

– Adversary seeing A,B cannot compute KA and KB

How to build such a protocol?

15/32

Diffie–Hellman(–Merkle) KE Protocol

Let p be a large prime and let g be a generator mod p. Let Zp = {0, …, p-1}

Ba = (gb)a = gab = (ga)b = Ab, so KA = KB

Adversary needs to compute gab mod p from ga mod p and gb mod p

How to pick p and g? How to compute gab mod p? Why is it hard for the
adversary to find the shared key? How to abstract away from this concrete setting?

 Some Computational Number Theory

17/32

Integers mod N

● Notation
– Z = {…, -2, -1, 0, 1, 2, …}
– N = {0, 1, 2, …}

– Z>0 = {1, 2, 3, …}

● For a,N ∈ Z let gcd(a,N) be the largest d ∈ Z>0 s.t. d|a and d|N

● Integers mod N. Let N ∈ Z>0

– ZN = {0, 1, …, N-1}

– Z*
N = {a ∈ ZN : gcd(a,N)=1} //integers that are coprime

– φ(N) = |Z*
N| //number of coprime integers; φ(N) = N·∏p|N(1-1/p)

Example: N=12
● Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
● Z*

12 ={ 1, 5, 7, 11}
● φ(12) = 4

18/32

Division, Remainder, Modulo

Let us write (q,r) ← div(a,N)
– Call q the quotient and r the remainder

– Then a mod N = r ∈ ZN

PROPOSITION 8.1 Let a be an integer and let N be a positive integer.
Then there exist unique integers q, r for which a = qN + r and 0 ≤ r < N.

a ≡ b (mod N) if
a mod N = b mod N or equivalently
N | (a-b)

Example:
● div(17,3) = (5,2) and 17 mod 3 = 2
● 17 ≡ 14 (mod 3)

Reduce and then add/multiply

(a + b) mod N = (a mod N + b mod N) mod N
(a • b) mod N = (a mod N • b mod N) mod N

19/32

Groups

● A (finite) group G is a (finite) non-empty set with a binary operation • s.t.
the following properties hold:

– Closure: For all g,h ∈ G, g • h ∈ G
– Identity: There exists e ∈ G s.t. for all g ∈ G we have e • g = g = g • e

– Inverse: For all g ∈ G there exists h ∈ G s.t. g • h = e = h • g

– Associativity: For all g,h,f ∈ G it holds that (g • h) • f = g • (h • f)

● A group is commutative (or abelian) if for all g,h ∈ G we have g • h = h • g

– We will only deal with commutative groups

Example:
● If N ∈ Z>0 then G = Z*

N with a • b mod N is a group

20/32

Exponentiation

Let us write gm := g • … • g for m ∈ N and m • g = g + … + g (for additive
groups)

Also let g-m := g-1 • … • g-1

We have for all i,j ∈ Z:

– gi+j = gi • gj

– gij = (gi)j=(gj)i

– g-i = (gi)-1 = (g-1)i

m-times m-times

m-times

Example: Let N=14 and G = Z*
N

● 53 = 5 • 5 • 5 ≡ 25 • 5 ≡ 11 • 5 ≡ 55 ≡ 13

21/32

Order of a Group

Order: If G is finite, then m:=|G| is called the order of the group

THEOREM 8.14 Let G be a finite group with m = |G|, the order of the
group. Then for any element g G, g∈ m = 1.

COROLLARY 8.15 Let G be a finite group with m = |G| > 1. Then for
any g ∈ G and any integer x, we have gx = g[x mod m].

THEOREM 8.14 Let G be a finite group with m = |G|, the order of the
group. Then for any element g ∈ G, gm = 1.

Example: Let N=21 and G = Z*
N. The order of Z*

21 is 12.

512 ≡ (53)4 ≡ 204 ≡ (-1)4 ≡ 1

Example: Let N=21 and G = Z*
N. The order of Z*

21 is 12.

574 ≡ 574 mod 12 ≡ 52 ≡ 4

22/32

Modular Exponentiation

● For cryptographic applications we deal with very large numbers, e.g.,
size of exponents hundreds to thousands of bits

● How to efficiently compute an for large n?
● Iteratively applying group operation requires O(n) = O(2|n|)

operations: exponential time!
● Fast exponentiation idea

– a → a2 → a4 → a8 → a16 → a32

– Use repeated squaring. If n=2i
compute an in i steps

– What if n is not a power of 2?

Suppose the binary length of n is 5,
i.e., the binary representation of n
has the form b4b3b2b1b0 . Then

n = 24b4 + 23b3 + 22b2 + 21b1 + 20b0

 = 16b4 + 8b3 + 4b2 + 2b1 + b0 .

Computing an:
t5 = 1

t4 = t5
2 • ab4 = ab4

t3 = t4
2 • ab3 = a2b4+b3

t2 = t3
2 • ab2 = a4b4+2b3+b2

t1 = t2
2 • ab1 = a8b4+4b3+2b2+b1

t0 = t1
2 • ab0 = a16b4+8b3+4b2+2b1+b0

23/32

Square and Multiply

● Let bin(n) := bk-1,…, b0 with

ALGORITHM: Square and multiply
Input: Group element a, integer n
Output: an

bk-1,…, b0 ← bin(n)
t ← 1

for j = k-1 to 0:
t ← t2 · abi

return t

The algorithm requires O(|n|) group operations

Precomputations: If element a is known and there is a bound on the size
of n, then one can precompute a table of powers of a. # multiplications
one less than Hamming weight of bin(n).

24/32

Cyclic Groups

Let us consider a finite group G of order m and write ‹g› = {g0 , g1 , …}

– We know that gm = 1 and now look at which elements the powers of g do
“generate”

– Let i ≤ m be the smallest positive integer for which gi=1, then the above
sequence repeats after i terms (gi=g0, gi+1 = gi, …) and ‹g› = {g0 , g1 , …, gi-1}

– We call i the order of g and ‹g› G⊆ G is called the subgroup generated by g

– If there is an element g with order m:=|G|, then G is called cyclic. We write
‹g› = G

PROPOSITION 8.52 Let G be a finite group, and g ∈ G an element of
order i. Then for any integer x, we have gx = g[x mod i].

PROPOSITION 8.54 Let G be a finite group of order m, and say g ∈ G
has order i. Then i | m.

25/32

Cyclic Groups - Example

Let G = Z*
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which has order m = 10.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

‹2› = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and thus 2 generates Z*
11

‹5› = {1, 3, 4, 5, 9} and thus 5 generates a subgroup of order 5

Z*
11 is a cyclic group (as it has a generator)

THEOREM 8.56 If p is prime then Zp
* is a cyclic group of order p − 1.

26/32

Generating Random Primes

How to generate large random prime numbers of size used in cryptography?

58096059953699580628595025333045743706869751763628952366614861522872037309971102257373360445331184072513261577549805174439905295945400471216628856721
8703240103211163970644049884404985098905162720024476580704181239472968054002410482797658436938152229236120877904476989274322575173807697956881130957
91255113330932435195537848163063815801618602002474925684481502425153044495771876041364287385809901725515739341462558303664059150008696437320532185668
32545291107903722831634138599586406690325959725187447169059540805012310209639011750748760017095360734234945757416272994856013308616958529958304677637
01918159408852834506128586389827176345729488354663887955431161544644633019925438234001629205709075117553388816191898729559153153669870129226768546551
743791579082315484463478026010289171803249539607504189948551381112697730747896907485704371071615012131592202455675924123901315291971095646840637944291
4941614357107914462567329693649

27/32

Generating Random Primes

ALGORITHM 8.31: Generating a random prime
Input: Length n; parameter t
Output: A uniform n-bit prime

for i = 1 to t: // try t times
p’ ←$ {0, 1}n−1 // randomly sample n-1 bits
p := 1||p’ // n-bit integer
if p is prime return p //check for primality

return fail

THEOREM 8.32 (Bertrand’s postulate):* For any n > 1, the fraction
of n-bit integers that are prime is at least 1/3n.
* the prime number theorem gives a better bound.

How to choose t s.t. we will catch a prime with high probability?

Setting t=3n2 the probability that we do not hit any prime in t iterations is
negligible.

How to implement the test “ if p is prime”?

28/32

Probabilistic Primality Test

COROLLARY 8.21 (Euler/Fermat): Take an arbitrary integer N > 1 and
a ∈ ZN

* . Then aφ(N) = 1 mod N.
For the specific case that N = p is prime and a ∈ {1,... , p − 1}, we have
ap−1 = 1 mod p.

The Fermat test: Given n, for i=1 to t: pick a←$ {1,…, n-1} and if an-1≠ 1 mod
n output “composite”. Output “prime”.

Unfortunately, there are “Fermat pseudo-primes” (Carmichael numbers),
which are composite but fool the test for any a.

Although there are deterministic primality tests, we use probabilistic ones
(as they are more efficient).
Probabilistic tests of the form: if the input n is a prime number, the algorithm
always outputs “prime.” If n is composite, then the algorithm would almost
always output “composite,” but might output the wrong answer (“prime”)
with a certain probability (composite is definite, for prime it can err).

29/32

Primality Testing in Practice

● Typically combine some pre-processing and Miller-Rabin
– Look up in first x primes, trial divisions with first y primes, fixed-base Fermat

test

– Then run e.g., t=40 rounds of Miller-Rabin

● Some don’t do a good job!

Craft composite numbers that will pass primality tests!

30/32

Finding Generators: How many are there?

● Proof: Consider an element h≠1. We can write h=gx for some 1 ≤ x < q

– If gcd(x,q) = r > 1: Then x=αr and q=βr with 1 ≤ r < q. Then we have hr and q=βr with 1 ≤ r < q. Then we have hr with 1 ≤ r < q. Then we have hβr with 1 ≤ r < q. Then we have h

= (gx)βr with 1 ≤ r < q. Then we have h = gαr and q=βr with 1 ≤ r < q. Then we have hrβr with 1 ≤ r < q. Then we have h = (gq)αr and q=βr with 1 ≤ r < q. Then we have h = 1. So h cannot be a generator.

– If gcd(x,q) = 1: Let i ≤ q be the order of h. Then g0 = 1 = hi = (gx)i = gxi,
and so xi = 0 mod q and thus q|xi. As gcd(x,q) = 1 we have q|i and so
q=i. Thus, h is a generator.

THEOREM B.16: Let G be a cyclic group of order q > 1 with generator g.
There are φ(q) generators of G, and these are exactly given by {gx | x ∈ Z*

q }.

COROLLARY 8.55 If G is a group of prime order p, then G is cyclic.
Furthermore, all elements of G except the identity are generators of G.

31/32

Finding Generators: How to find them?

PROPOSITION B.17 Let G be a group of order q, and let q = ∏p
i=1 pi

ei

be the prime factorization of q, where the pi are distinct primes and ei ≥ 1.

Set qi = q/pi . Then h ∈ G is a generator of G if and only if hqi ≠1 for i = 1, ..., k.

If we do not know the factorization of q, then we could simple enumerate
trough all elements to check if an element is a generator (inefficient!).

The known factorization suggests a more efficient algorithm.

ALGORITHM B.18: Testing for generators
Input: Group order q, factors {pi} of q, element h
Output: A decision bit
for j = 1 to k:

if hq/pi =1 return “false”
return “true”

32/32

Isomorphism of Cyclic Groups

EXAMPLE 8.61: Let G be a cyclic group of order n, and let g be a generator
of G. Then the mapping f : Zn → G given by f (a) = ga is an isomorphism

between Zn and G. Indeed, for a, a’ ∈ Zn we have f (a + a’) = g [a+a’ mod n] =

ga+a = ga · ga’ = f (a) · f (a’).

From an algebraic point of view all cyclic groups are the “same”.

We have seen that f is easy to compute generically (square-and-
multiply). However, from an computational point of view in particular f-1
does not need to be efficiently computable.

We will formalize this as the discrete logarithm problem.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

