Modern Cryptography: Lecture 9

The Public Key Revolution I/II

Daniel Slamanig

Who am I?

- I work as a scientist in the cryptography group at AIT in Vienna
- Previously PostDoc and Senior Researcher at TU Graz
- AIT is Austria's largest Research and Technology Organization (RTO)
- about 1.300 employees
- We offer internships, master and PhD student projects/supervision

Organizational

- Where to find the slides and homework?
- https://danielslamanig.info/ModernCrypto19
- How to contact me?
- daniel.slamanig@ait.ac.at
- Tutors: Frederick Klinser, Karen Klein
- e11776880@student.tuwien.ac.at; karen.klein@ist.ac.at
- Official page at TU, Location etc.
- https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463\&dsrid=41 7\&courseNr=192062\&semester=2019W
- Tutorial, TU site
- https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593\&dsrid=24 6\&courseN r=192063
- Exam for the second part: Thursday 30.01.2020 15:00-17:00 (Tutorial slot)
- No tutorial this week \rightarrow exam for first part

Outlook - Second Part

- Now we are switching to public key cryptography
- What will be covered?
- Some basic computational number theory
- Key exchange protocols
- Public key encryption
- Digital signatures
- Selected Topics
- Invited Lecture (Dr. Christoph Striecks - AIT) - 28.01.2020
- Advanced public key encryption (identity-based encryption and attribute-based encryption)
- The lecture next week will be held by Karen Klein

Recap: Symmetric Cryptography

Key k

Insecure channel

Confidential \& authentic message

Key k

How to safely agree on the key k ?

Agreeing on a common key?

- Use another channel where we can be sure there "is" no eavesdropper
- Meeting in person?
- "red phone" connecting Moscow and Washington in the 1960s
- Exchange using briefcases full of prints for one-time pad encryption
- Does not "really" scale well
- Costs, delay, ...

Scaling to Large Networks: N² Problem

- Each of the N parties will have to store N-1 keys securely
- Cumbersone key management (update in case of loss of keys, etc.)
- Open systems?

A Partial Solution - Key Distribution Center (KDC)

"lets talk", Enc ${ }_{k c}$ (k)

- Add a trusted party (KDC) which shares a key with each party (N keys instead of N^{2})
- Key updates easier, but not scalable to open systems; single point of attack
- Commonly used in closed systems (Kerberos, etc.)

The Public Key Revolution

Whitfield Diffie

Martin Hellman

IEEE TRANSACTIONS ON INFORMATION THEORY, vOL. 1.22, NO. 6, NOVEMBER 1976
New Directions in Cryptography
Invited Paper
WHITFIELD DIFFIE AND MARTIN E. HELLMAN, MEMBER, IEEE

COMMUNICATIONS OF THE ACM

Reply to:
Susan L. Graham
Computer Science Division - EECS University of California, Berkeley Berkeley, Ca. 94720
October 22, 1975

Diffie \& Hellman won ACM A.M. Turing Award 2015 ${ }^{*}$ for fundamental contributions to modern cryptography

Mr. Ralph C. Merkle 2441 Haste St., \#19 Berkeley, Ca. 94704

Dear Ralph:
Enclosed is a referee report by an experienced cryptography expert on your manuscript "Secure Communications over Insecure Channels." On on your manuscript "Secure Communications over Insecure Channels." On
the basis of this report I am unable to publish the manuscript in its present form in the Communcations of the ALM.

Key Exchange over Insecure Channels

- Achieve private communication without ever communicating over a private channel (e.g., meet personally to exchange keys)!
- Use of asymmetry in certain actions: actions that are easy to compute in one direction, but not easily reversed (one-way)
- We discuss secure key-exchange protocols à la Diffie-Hellman (or Diffie-Hellman-Merkle to be fair)

Key agreement (no prior secrets); confidential message exchange

Key Exchange - Practical Relevance

Key Exchange - Setting

- Let us consider a two-party key-exchange (KE) protocol Π

trans : $=\left(m_{1}, m_{2}, \ldots m_{1}\right)$
Transcript of conversation
n-bit key k
Exchanged secret key

Key Exchange - Security Definition

$\mathrm{KE}_{\mathcal{A}, \Pi}^{\text {eav }}$ Security $\S 10.3$

security parameter $n \in \mathbb{N}$

A key-exchange protocol Π is secure in the presence of an eavesdropper if for every PPT adversary A

$$
\operatorname{Pr}\left[b=b^{*}\right] \leq 1 / 2+\operatorname{negl}(n)
$$

Abstract Diffie-Hellman(-Merkle) KE Protocol

What do we want from such a protocol?

- $K_{A}=K_{B}$ so that both end up with the same shared key
- Adversary seeing A, B cannot compute K_{A} and K_{B}

How to build such a protocol?

Diffie-Hellman(-Merkle) KE Protocol

Let p be a large prime and let g be a generator $\bmod p . \operatorname{Let} \mathbf{Z}_{p}=\{0, \ldots, p-1\}$

$B^{a}=\left(g^{b}\right) a=g^{a b}=\left(g^{a}\right)^{b}=A^{b}, s o K_{A}=K_{B}$
Adversary needs to compute gab mod p from ga mod p and gb mod p

How to pick p and g ? How to compute gab mod p ? Why is it hard for the adversary to find the shared key? How to abstract away from this concrete setting?

Some Computational Number Theory

Integers mod N

- Notation

$$
\begin{aligned}
& -Z=\{\ldots,-2,-1,0,1,2, \ldots\} \\
& -N=\{0,1,2, \ldots\} \\
& -Z_{>0}=\{1,2,3, \ldots\}
\end{aligned}
$$

- For $a, N \in Z$ let $\operatorname{gcd}(a, N)$ be the largest $d \in Z_{>0}$ s.t. $d \mid a$ and $d \mid N$
- Integers mod N. Let $N \in Z_{>0}$
- $Z_{N}=\{0,1, \ldots, N-1\}$
- $Z^{*}{ }_{N}=\left\{a \in Z_{N}: \operatorname{gcd}(a, N)=1\right\} \quad / /$ integers that are coprime
- $\varphi(N)=\left|Z^{*}{ }_{N}\right| \quad$ //number of coprime integers; $\varphi(N)=N \cdot \Pi_{p \mid N}(1-1 / p)$

Example: $\mathrm{N}=12$

- $Z_{12}=\{0,1,2,3,4,5,6,7,8,9,10,11\}$
- $Z_{12}^{*}=\{1,5,7,11\}$
- $\varphi(12)=4$

Division, Remainder, Modulo

PROPOSITION 8.1 Let a be an integer and let N be a positive integer. Then there exist unique integers q, r for which $a=q N+r$ and $0 \leq r<N$.

Let us write $(\mathrm{q}, \mathrm{r}) \leftarrow \operatorname{div}(\mathrm{a}, \mathrm{N})$

- Call q the quotient and r the remainder
- Then $\operatorname{a} \bmod N=r \in Z_{N}$
$a \equiv b(\bmod N)$ if
a mod $N=b \bmod N$ or equivalently N | (a-b)

Example:

Reduce and then add/multiply

- $\operatorname{div}(17,3)=(5,2)$ and $17 \bmod 3=2$
- $17 \equiv 14(\bmod 3)$
$(a+b) \bmod N=(a \bmod N+b \bmod N) \bmod N$ $(a \cdot b) \bmod N=(a \bmod N \cdot b \bmod N) \bmod N$

Groups

- A (finite) group G is a (finite) non-empty set with a binary operation \cdot s.t. the following properties hold:
- Closure: For all g,h $\in \mathrm{G}, \mathrm{g} \cdot \mathrm{h} \in \mathrm{G}$
- Identity: There exists $e \in G$ s.t. for all $g \in G$ we have $e \cdot g=g=g \cdot e$
- Inverse: For all $g \in G$ there exists $h \in G$ s.t. $g \cdot h=e=h \cdot g$
- Associativity: For all g,h,f $\in G$ it holds that $(g \cdot h) \cdot f=g \cdot(h \cdot f)$
- A group is commutative (or abelian) if for all $g, h \in G$ we have $g \cdot h=h \cdot g$
- We will only deal with commutative groups

Example:

- If $N \in Z_{>0}$ then $G=Z_{N}^{*}$ with $a \cdot b$ mod N is a group

Exponentiation

Let us write $g^{m}:=g \cdot \ldots \cdot g$ for $m \in N$ and $m \cdot g=g+\ldots+g$ (for additive groups)
 m-times

Also let $g^{-m}:=g^{-1} \cdot . . . \cdot g^{-1}$ m-times

We have for all $i, j \in \mathbf{Z}$:

- $g^{i+j}=g^{i} \cdot g j$
- $g^{i j}=\left(g^{i}\right) j=(g j) i$
- $g^{-i}=\left(g^{i}\right)^{-1}=\left(g^{-1}\right)^{i}$

Example: Let $\mathrm{N}=14$ and $\mathrm{G}=\mathrm{Z}_{\mathrm{N}}^{*}$

$\cdot 5^{3}=5 \cdot 5 \cdot 5 \equiv 25 \cdot 5 \equiv 11 \cdot 5 \equiv 55 \equiv 13$

Order of a Group

Order: If G is finite, then $m:=|G|$ is called the order of the group
THEOREM 8.14 Let G be a finite group with $m=|G|$, the order of the group. Then for any element $\mathrm{g} \in \mathrm{G}, \mathrm{g}^{\mathrm{m}}=1$.

Example: Let $\mathrm{N}=21$ and $\mathrm{G}=\mathbf{Z}_{\mathrm{N}}^{*}$. The order of \mathbf{Z}_{21}^{*} is 12 .
$5^{12} \equiv\left(5^{3}\right)^{4} \equiv 20^{4} \equiv(-1)^{4} \equiv 1$

COROLLARY 8.15 Let G be a finite group with $m=|G|>1$. Then for any $g \in G$ and any integer x, we have $g^{x}=g^{[x \bmod m]}$.

Example: Let $\mathrm{N}=21$ and $\mathrm{G}=\mathbf{Z}_{\mathrm{N}}^{*}$. The order of \mathbf{Z}_{21}^{*} is 12 .
$5^{74} \equiv 5^{74} \bmod 12 \equiv 5^{2} \equiv 4$

Modular Exponentiation

- For cryptographic applications we deal with very large numbers, e.g., size of exponents hundreds to thousands of bits
- How to efficiently compute a^{n} for large n ?
- Iteratively applying group operation requires $\mathrm{O}(\mathrm{n})=\mathrm{O}\left(2^{|n|}\right)$ operations: exponential time!
- Fast exponentiation idea
- $a \rightarrow a^{2} \rightarrow a^{4} \rightarrow a^{8} \rightarrow a^{16} \rightarrow a^{32}$
- Use repeated squaring. If $n=2^{i}$ compute an in i steps
- What if n is not a power of 2 ?

Suppose the binary length of n is 5 , i.e., the binary representation of n has the form $b_{4} b_{3} b_{2} b_{1} b_{0}$. Then

$$
\begin{aligned}
n & =2^{4} b_{4}+2^{3} b_{3}+2^{2} b_{2}+2^{2} b_{1}+2^{0} b_{0} \\
& =16 b_{4}+8 b_{3}+4 b_{2}+2 b_{1}+b_{0} .
\end{aligned}
$$

Computing a^{n} :

$$
\mathrm{t}_{5}=1
$$

$$
\mathrm{t}_{4}=\mathrm{t}_{5}^{2} \cdot \mathrm{a}^{\mathrm{b} 4}=a^{\mathrm{b} 4}
$$

$$
\mathrm{t}_{3}=\mathrm{t}_{4}{ }_{4}^{2} \cdot \mathrm{a}^{\mathrm{b} 3} \quad=\mathrm{a}^{2 \mathrm{~b} 4+\mathrm{b} 3}
$$

$$
t_{2}=t_{3}^{2} \cdot a^{b 2} \quad=a^{4 b 4+2 b 3+b 2}
$$

$$
t_{1}=t_{2}^{2} \cdot a^{b_{1}} \quad=a^{8 b 4+4 b 3+2 b_{2}+b 1}
$$

$$
t_{0}=t_{1}^{2} \cdot a^{b 0}=a^{16 b 4+8 b 3+4 b 2+2 b 1+b 0}
$$

Square and Multiply

- Let $\operatorname{bin}(n):=b_{k-1, \ldots}, b_{0}$ with $n=\sum_{i=0}^{k-1} b_{i} 2^{i}$

```
ALGORITHM: Square and multiply
Input: Group element a, integer n
Output: an
b
t}\leftarrow
    for j = k-1 to 0:
        t\leftarrowt2}\cdot\mp@subsup{a}{}{bi
return t
```

The algorithm requires $\mathbf{O}(|n|)$ group operations
Precomputations: If element a is known and there is a bound on the size of n, then one can precompute a table of powers of a. \# multiplications one less than Hamming weight of $\operatorname{bin}(n)$.

Cyclic Groups

Let us consider a finite group G of order m and write $\langle g\rangle=\left\{g^{0}, g^{1}, \ldots\right\}$

- We know that $g^{m}=1$ and now look at which elements the powers of g do "generate"
- Let $i \leq m$ be the smallest positive integer for which $g^{i}=1$, then the above sequence repeats after i terms $\left(g^{i}=g^{0}, g^{i+1}=g^{i}, \ldots\right)$ and $\left\langle g^{\prime}=\left\{g^{0}, g^{1}, \ldots, g^{i-1}\right\}\right.$
- We call i the order of g and $\langle g\rangle G$ is called the subgroup generated by g
- If there is an element g with order $m:=|G|$, then G is called cyclic. We write $\langle g\rangle=G$

PROPOSITION 8.52 Let G be a finite group, and $g \in G$ an element of

 order i. Then for any integer x , we have $\mathrm{g}^{\mathrm{x}}=\mathrm{g}^{[\mathrm{x} \bmod \mathrm{i}]}$.PROPOSITION 8.54 Let G be a finite group of order m, and say $g \in G$ has order i. Then il m.

Cyclic Groups - Example

$$
\text { Let } G=Z^{*}{ }_{11}=\{1,2,3,4,5,6,7,8,9,10\} \text {, which has order } m=10 .
$$

	0	1	2	3	4	5	6	7	8	9	10
$2^{i} \bmod 11$	1	2	4	8	5	10	9	7	3	6	1
$5^{i} \bmod 11$	1	5	3	4	9	1	5	3	4	9	1

$\langle 2\rangle=\{1,2,3,4,5,6,7,8,9,10\}$ and thus 2 generates \mathbf{Z}_{11}^{*}
$\langle 5\rangle=\{1,3,4,5,9\}$ and thus 5 generates a subgroup of order 5
Z_{11}^{*} is a cyclic group (as it has a generator)

THEOREM 8.56 If p is prime then $Z_{p}{ }^{*}$ is a cyclic group of order $p-1$.

Generating Random Primes

How to generate large random prime numbers of size used in cryptography?

58096059953699580628595025333045743706869751763628952366614861522872037309971102257373360445331184072513261577549805174439905295945400471216628856721 8703240103211163970644049884404985098905162720024476580704181239472968054002410482797658436938152229236120877904476989274322575173807697956881130957 91255113330932435195537848163063815801618602002474925684481502425153044495771876041364287385809901725515739341462558303664059150008696437320532185668 32545291107903722831634138599586406690325959725187447169059540805012310209639011750748760017095360734234945757416272994856013308616958529958304677637 01918159408852834506128586389827176345729488354663887955431161544644633019925438234001629205709075117553388816191898729559153153669870129226768546551 743791579082315484463478026010289171803249539607504189948551381112697730747896907485704371071615012131592202455675924123901315291971095646840637944291
4941614357107914462567329693649

Generating Random Primes

```
ALGORITHM 8.31: Generating a random prime
Input: Length n; parameter t
Output: A uniform n-bit prime
    for i = 1 to t: /| try t times
        p}<<{{0,1\mp@subsup{}}{}{n-1}// \mathrm{ randomly sample n-1 bits
        p:= 1||p' // n-bit integer
        if p is prime return p //check for primality
    return fail
```

How to choose t s.t. we will catch a prime with high probability?
THEOREM 8.32 (Bertrand's postulate):* For any $n>1$, the fraction of n-bit integers that are prime is at least $1 / 3 n$.

* the prime number theorem gives a better bound.

Setting $t=3 n^{2}$ the probability that we do not hit any prime in t iterations is negligible.

How to implement the test "if p is prime"?

Probabilistic Primality Test

Although there are deterministic primality tests, we use probabilistic ones (as they are more efficient).
Probabilistic tests of the form: if the input n is a prime number, the algorithm always outputs "prime." If n is composite, then the algorithm would almost always output "composite," but might output the wrong answer ("prime") with a certain probability (composite is definite, for prime it can err).

COROLLARY 8.21 (Euler/Fermat): Take an arbitrary integer $N>1$ and
$a \in Z_{N}^{*}$. Then $a^{\varphi(N)}=1 \bmod N$.
For the specific case that $\mathrm{N}=\mathrm{p}$ is prime and $\mathrm{a} \in\{1, \ldots, \mathrm{p}-1\}$, we have $a^{p-1}=1 \bmod p$.

> The Fermat test: Given n, for $\mathrm{i}=1$ to t: pick $a \nleftarrow\{1, \ldots, n-1\}$ and if $a^{n-1} \neq 1 \bmod$ n output "composite". Output "prime".

Unfortunately, there are "Fermat pseudo-primes" (Carmichael numbers), which are composite but fool the test for any a.

Primality Testing in Practice

- Typically combine some pre-processing and Miller-Rabin
- Look up in first x primes, trial divisions with first y primes, fixed-base Fermat test
- Then run e.g., $t=40$ rounds of Miller-Rabin
- Some don't do a good job!

Primality testing in Apple core...crypto

Prime and Prejudice: Primality Testing Under Adversarial Conditions

Martin R. Albrecht ${ }^{1}$, Jake Massimo ${ }^{1}$, Kenneth G. Paterson ${ }^{1}$, and Juraj Somorovskv ${ }^{2}$
${ }^{1}$ Royal Holloway, University of London
${ }^{2}$ Ruhr University Bochum, Germany martin.albrecht@rhul.ac.uk, jake.massimo.2015@rhul -
juraj.somorov~"

Abstract. This conditions, where c cr , veing tested for primality are not generated randomly, but instead provided by possibly malicious party. Such a situation can arise in secure messaging

[^0]
Finding Generators: How many are there?

THEOREM B.16: Let G be a cyclic group of order $q>1$ with generator g. There are $\varphi(\mathrm{q})$ generators of G , and these are exactly given by $\left\{\mathrm{g}^{\mathrm{x}} \mid x \in \mathrm{Z}_{\mathrm{q}}^{*}\right\}$.

- Proof: Consider an element $h \neq 1$. We can write $h=g x$ for some $1 \leq x<q$
- If $\operatorname{gcd}(x, q)=r>1$: Then $x=\alpha r$ and $q=\beta r$ with $1 \leq r<q$. Then we have $h \beta$ $=\left(g^{x}\right) \beta=g^{\operatorname{ar} \beta}=(g q) \alpha=1$. So h cannot be a generator.
- If $\operatorname{gcd}(x, q)=1$: Let $i \leq q$ be the order of h. Then $g^{0}=1=h i=\left(g^{x}\right) i=g^{x i}$, and so $x i=0 \bmod q$ and thus $q \mid x i$. As $g c d(x, q)=1$ we have $q \mid i$ and so $q=i$. Thus, h is a generator.

COROLLARY 8.55 If G is a group of prime order p , then G is cyclic. Furthermore, all elements of G except the identity are generators of G .

Finding Generators: How to find them?

PROPOSITION B. 17 Let G be a group of order q, and let $q=\Pi_{i=1}^{p} p_{i}^{\text {ei }}$
be the prime factorization of q, where the p_{i} are distinct primes and $e_{i} \geq 1$.
Set $q_{i}=q / p_{i}$. Then $h \in G$ is a generator of G if and only if $h^{q i} \neq 1$ for $i=1, \ldots, k$.

If we do not know the factorization of q, then we could simple enumerate trough all elements to check if an element is a generator (inefficient!).

The known factorization suggests a more efficient algorithm.

```
ALGORITHM B.18: Testing for generators
Input: Group order q, factors {p;} of q, element h
Output: A decision bit
for j= 1 to k:
    if ha/pi =1 return "false"
return "true"
```


Isomorphism of Cyclic Groups

EXAMPLE 8.61: Let G be a cyclic group of order n, and let g be a generator of G. Then the mapping $f: Z_{n} \rightarrow G$ given by $f(a)=g^{a}$ is an isomorphism between \mathbf{Z}_{n} and G . Indeed, for $\mathrm{a}, \mathrm{a}^{\prime} \in \mathbf{Z}_{\mathrm{n}}$ we have $\mathrm{f}\left(\mathrm{a}+\mathrm{a}^{\prime}\right)=\mathrm{g}^{\left[a+a^{\prime} \bmod \mathrm{n}\right]}=$ $g^{a+a}=g^{a} \cdot g^{a^{a}}=f(a) \cdot f\left(a^{\prime}\right)$.

From an algebraic point of view all cyclic groups are the "same".
We have seen that f is easy to compute generically (square-andmultiply). However, from an computational point of view in particular f-1 does not need to be efficiently computable.

We will formalize this as the discrete logarithm problem.

[^0]: Today Apple publish their security update (https://support.apple.com/en-gb/HT201222). for marcOS Mojave 10.14 .1 and IOS 12.1 , which includes changes to the way they test numbers for primality. In this post I will describe how easily we could produce composite numbers that fool Apple into classifying as prime what exactly has changed to the primality testing in this update.

