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Organizational

● Where to find the slides and homework?
– https://danielslamanig.info/ModernCrypto19

● How to contact me?
– daniel.slamanig@ait.ac.at

● Tutors: Guillermo Perez, Karen Klein
– guillermo.pascualperez@ist.ac.at; karen.klein@ist.ac.at 

● Official page at TU, Location etc.
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid

=417&courseNr=192062&semester=2019W

● Tutorial, TU site
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid

=246&courseNr=192063

● Exam for the second part: Thursday 30.01.2020 15:00-17:00 (Tutorial 
slot)

https://danielslamanig.info/ModernCrypto19
mailto:daniel.slamanig@ait.ac.at
mailto:guillermo.pascualperez@ist.ac.at
mailto:karen.klein@ist.ac.at
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid=417&courseNr=192062&semester=2019W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid=417&courseNr=192062&semester=2019W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid=246&courseNr=192063
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid=246&courseNr=192063
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Topics in Advanced Cryptography…

Hash functions Symmetric 
Encryption MACs PRFs

Public Key 
Encryption

Digital 
Signatures Key Exchange

Commitments

IBE ABE

Functional Encryption

Oblivious 
Transfer

Fully Homomorphic Encryption 
(Computing on Encypted Data)

(Non-Interactive) Zero Knowledge 
Proofs (+ SNARKs, STARKs, etc.)

Oblivious RAM, Private Information 
Retrieval

Multiparty Comptuation (MPC)

Program Obfuscation

Privacy Enhancing Cryptography 
(Crypto PETs)

Threshold 
Cryptography

Verifiable 
Computation

Etc.

Etc.

Etc.

Etc.
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Selected Topics

● Threshold cryptography
– Distribute operations with the secret key sk among a set of parties

– A certain number of participants need to be involved to perform an 
operation

● Brief primer on Multiparty Computation (MPC)
– A number of parties can compute any function jointly without revealing 

their inputs to the other parties

● Puncturable Encryption
– Public key encryption with “update capabilities” on the secret key

– Secret key can be punctured on ciphertext s.t. this ciphertext can no 
longer be decrypted 
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Threshold Cryptography: Motivation

● If the secret key (of an encryption or signature scheme) is in a single 
location, this represents a single point of failure
– Problem that happened in practice, e.g., with Bitcoin ECDSA private keys

● We may want to enforce that a signature generation or decryption is 
only possible when a certain set of participants agree to do so 

● Idea
– Let a set of parties jointly generate a secret key (“shares” of the key may 

also be distributed to the parties by a trusted dealer)

– The public key typically looks like a public key of the underlying scheme
● So public key operations are as usual

– Using the secret key (i.e., signing or decryption) requires an interactive 
protocol between (a subset of the) participants
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Secret Sharing

● A dealer shares a secret key between n participants
● Each participant i ∈ {1,…, n} receives a share
● Predefined groups of participants (so called authorized groups) can 

cooperate to reconstruct the secret from their shares
● Unauthorized groups cannot get any information about the secret

● We will look at (k, n)-threshold secret sharing schemes
– Every subset of at least k participants of the n participants can 

reconstruct the secret (is authorized)

– Any subset of k−1 participants will get no information about the secret (is 
unauthorized)
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(n,n)-Treshold Secret Sharing

● Let s be a secret from a finite group (G, +)

● The dealer chooses n-1 uniformly random elements s1 , ... , sn−1 from G 
and computes sn = s − (s1 + ... + sn−1)

● The shares are (s1 , ... , sn) and party i is given share si

● Given (s1 , ... , sn), one can successfully recover s = s1 + ... + sn 

● Given si for i ≠ j: Σi ≠ j si = s − sj is uniformly random (no information)

● Not robust at all!

– If a single participant fails to provide the share, reconstruction is 
not possible

● We are interseted in (k,n)-threshold schemes where k<n



8/44

Shamir Secret Sharing

● Basis

– Given k points on the plane (x1, y1), ... , (xk, yk), all xi distinct, there exists an 
unique polynomial f of degree ≤ k − 1, s.t. f(xi) = yi for all i

– Holds also in the field Zp for p prime

– Constructive proof: Use Lagrange interpolation

● How is this used?

– Let s be a secret in Zp and the threshold be k

– Dealer selects a random degree k-1 polynomial f(x) = ak-1xk-1+ … + a1x + a0

● Select ak-1, …, a1 uniformly random from Zp and set a0 = s

– For i ∈ {1, …,n}, give the share si = (i, f(i)) to the ith participant
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Shamir Secret Sharing

● Correctness: the secret s can be reconstucted from every subset of k shares

– Proof: By the Langrange formula, given k points (xi, yi), for i = 1, ... ,k

– and consequently 

● Secrecy (perfect): Any subset of up to k − 1 shares does not leak any 
information on the secret

– Proof: Given k – 1 shares (xi, yi) every candidate secret s’∈ Zp corresponds to a 
unique polynomial of degree k-1 for which f(0)=s’. For all s’ ∈ Zp the 
probabilities Pr[s’ = s] are equal.



10/44

Threshold Encryption

Dealer

Secret key sPublic key pk

s1

s2

s3

s4s5

c c

c c

c ←Encpk(m)

m

m m

m
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Threshold ElGamal Encryption

● Let z be the ElGamal secret key and h:=gz the public key (we work in a 
group G of prime order q generated by g).

● Every participant i receives a share si = (i, yi) of z obtained from Shamir 
(k,n)-threshold secret sharing

● We observe (notice that Δj are publicly computable) that

● Given an ElGamal ciphertext (c1, c2) = (gr, mhr) we assume a honst set X 
of t participants 

– Every participant j in X broadcasts wj := (c1)yj

– Everyone in X can recover the plaintext as  

Correctness: 
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Threshold Cryptography: Remarks

● We have assumed that the parties participating in the decryption are 
honest
– Malicious parties can enforce an incorrect result by publishing a 

malformed wj value 

– Can be prevented by forcing the parties to prove that the wj values are 
well formed (i.e., by attaching a non-interactive zero-knowledge proof)

● Can come up with threshold versions of various signature schemes
– Schnorr, (EC)DSA, etc.

– Somewhat hot topic today (cryptocurrencies) 
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Multiparty Computation

● We have seen a very specific functionality computed in a distributed 
way without requiring the participants to reveal their secret inputs

● Can we do every computation in such a threshold manner? Yes!

f, x1

f, x2
f, x3

f, x4f, x5

y=f(x1,...x5)

y=f(x1,...x5)
y=f(x1,...x5)

y=f(x1,...x5)

y=f(x1,...x5)
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Multiparty Computation

● We look at Ben-Or, Goldwasser, Wigderson (BGW) in a finite field Zp

– Every possible function in Zp is a polynomial 

– We need to show how we can do addition and multiplication

● BGW is a general MPC protocol that provides information theoretic 
guarantees
– in the presence of semi-honest adversaries controlling a minority of 

parties ( < n/2)

– in the presence of malicious adversaries controlling less than a third of 
the parties (< n/3). 
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Multiparty Computation

● Use Shamir’s (k,n)-threshold secret sharing with k > n/2 (honest 
majority)

● Every party i has a secret si and polynomial fi(0) = si 

● Every party j holds shares fi(j), i ≠j,

● Addition: Given f1(j) and f2(j) just add the shares: participants then 
share the polynomial f1 + f2 with (f1 + f2)(0) = s1 + s2. 

● Multiplication: if h = (f1 · f2) then h(0) = s1 · s2

– However, h would have degree deg f1 + deg f2 = 2k − 2

– Coefficients of h are not uniformly random

– After every multiplication the parties perform a simple protocol that 
reduces the degree of h and adds uniformly random values to all 
coefficients of h, except to h0
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Multiparty Computation

● Very hot and active topic nowadays
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Puncturable Encryption

● Public key encryption with “update capabilities” on the secret key
● Secret key can be punctured on ciphertext s.t. this ciphertext can no 

longer be decrypted
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Perfect Forward Secrecy

time

k1

k2

k3

k4
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Puncturable Encryption: Application fs 0-RTT Key Exchange

Can we already send encrypted payload with the first message?

Desired properties: 
● Replay protection
● Forward secrecy



20/44

Puncturable Encryption: Application fs 0-RTT Key Exchange
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Puncturable Encryption: Application fs 0-RTT Key Exchange

Use of puncturable encryption [GM15, GHJL17, DJSS18]
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Puncturable Encryption

● We are looking at one construction idea
– Construct a scheme with non-negligible correctness error: does not 

matter too much for key-exchange
● E.g., 1 in 1000 sessions fail (can then fallback to 1-RTT)

● The most basic construction is called Bloom Filter Encryption (BFE)
– Bloom Filter: data structure for probabilistic set membership checks 
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Puncturable Encryption: Bloom Filters
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Puncturable Encryption: Bloom Filters
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Puncturable Encryption: Bloom Filters
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Puncturable Encryption: Bloom Filters
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Puncturable Encryption: Bloom Filters
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Puncturable Encryption: Bloom Filters
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Puncturable Encryption: Bloom Filters
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Puncturable Encryption: Bloom Filters
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Puncturable Encryption: BFE Construction
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Puncturable Encryption: BFE Construction
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Puncturable Encryption: BFE Construction
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Puncturable Encryption: BFE Construction
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Puncturable Encryption: BFE Construction
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Puncturable Encryption: BFE Construction
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Puncturable Encryption: Bloom Filters
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Puncturable Encryption: Bloom Filters
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Puncturable Encryption: Bloom Filters
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Puncturable Encryption: Bloom Filters
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Puncturable Encryption: Bloom Filters
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Puncturable Encryption: Bloom Filters
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Puncturable Encryption: Bloom Filters

● Maximum # of elements in BF: 220

– ≈ 212 puncturings/day for full year

● False positive probability: 10−3

● BF size m = n · ln p/(ln 2)2 ≈ 2MB
● # hash functions k = ⌈m/n · ln 2⌉ = 10

● Constructions from different primitives
– Identity-based encryption (IBE), Attribute-based encryption (ABE)

– Identity-based broadcast encryption (IBBE)
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The End

● Thank you all for participating in the course! It was a lot of fun!

● If you are interested in summer internships/bachelor/master projects 
please just contact me

Good luck for the final exam!!
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