
Daniel Slamanig

Modern Cryptography: Lecture 14
Selected Topics

2/44

Organizational

● Where to find the slides and homework?
– https://danielslamanig.info/ModernCrypto19

● How to contact me?
– daniel.slamanig@ait.ac.at

● Tutors: Guillermo Perez, Karen Klein
– guillermo.pascualperez@ist.ac.at; karen.klein@ist.ac.at

● Official page at TU, Location etc.
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid

=417&courseNr=192062&semester=2019W

● Tutorial, TU site
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid

=246&courseNr=192063

● Exam for the second part: Thursday 30.01.2020 15:00-17:00 (Tutorial
slot)

https://danielslamanig.info/ModernCrypto19
mailto:daniel.slamanig@ait.ac.at
mailto:guillermo.pascualperez@ist.ac.at
mailto:karen.klein@ist.ac.at
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid=417&courseNr=192062&semester=2019W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid=417&courseNr=192062&semester=2019W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid=246&courseNr=192063
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid=246&courseNr=192063

3/44

Topics in Advanced Cryptography…

Hash functions Symmetric
Encryption MACs PRFs

Public Key
Encryption

Digital
Signatures Key Exchange

Commitments

IBE ABE

Functional Encryption

Oblivious
Transfer

Fully Homomorphic Encryption
(Computing on Encypted Data)

(Non-Interactive) Zero Knowledge
Proofs (+ SNARKs, STARKs, etc.)

Oblivious RAM, Private Information
Retrieval

Multiparty Comptuation (MPC)

Program Obfuscation

Privacy Enhancing Cryptography
(Crypto PETs)

Threshold
Cryptography

Verifiable
Computation

Etc.

Etc.

Etc.

Etc.

4/44

Selected Topics

● Threshold cryptography
– Distribute operations with the secret key sk among a set of parties

– A certain number of participants need to be involved to perform an
operation

● Brief primer on Multiparty Computation (MPC)
– A number of parties can compute any function jointly without revealing

their inputs to the other parties

● Puncturable Encryption
– Public key encryption with “update capabilities” on the secret key

– Secret key can be punctured on ciphertext s.t. this ciphertext can no
longer be decrypted

5/44

Threshold Cryptography: Motivation

● If the secret key (of an encryption or signature scheme) is in a single
location, this represents a single point of failure
– Problem that happened in practice, e.g., with Bitcoin ECDSA private keys

● We may want to enforce that a signature generation or decryption is
only possible when a certain set of participants agree to do so

● Idea
– Let a set of parties jointly generate a secret key (“shares” of the key may

also be distributed to the parties by a trusted dealer)

– The public key typically looks like a public key of the underlying scheme
● So public key operations are as usual

– Using the secret key (i.e., signing or decryption) requires an interactive
protocol between (a subset of the) participants

6/44

Secret Sharing

● A dealer shares a secret key between n participants
● Each participant i ∈ {1,…, n} receives a share
● Predefined groups of participants (so called authorized groups) can

cooperate to reconstruct the secret from their shares
● Unauthorized groups cannot get any information about the secret

● We will look at (k, n)-threshold secret sharing schemes
– Every subset of at least k participants of the n participants can

reconstruct the secret (is authorized)

– Any subset of k−1 participants will get no information about the secret (is
unauthorized)

7/44

(n,n)-Treshold Secret Sharing

● Let s be a secret from a finite group (G, +)

● The dealer chooses n-1 uniformly random elements s1 , ... , sn−1 from G
and computes sn = s − (s1 + ... + sn−1)

● The shares are (s1 , ... , sn) and party i is given share si

● Given (s1 , ... , sn), one can successfully recover s = s1 + ... + sn

● Given si for i ≠ j: Σi ≠ j si = s − sj is uniformly random (no information)

● Not robust at all!

– If a single participant fails to provide the share, reconstruction is
not possible

● We are interseted in (k,n)-threshold schemes where k<n

8/44

Shamir Secret Sharing

● Basis

– Given k points on the plane (x1, y1), ... , (xk, yk), all xi distinct, there exists an
unique polynomial f of degree ≤ k − 1, s.t. f(xi) = yi for all i

– Holds also in the field Zp for p prime

– Constructive proof: Use Lagrange interpolation

● How is this used?

– Let s be a secret in Zp and the threshold be k

– Dealer selects a random degree k-1 polynomial f(x) = ak-1xk-1+ … + a1x + a0

● Select ak-1, …, a1 uniformly random from Zp and set a0 = s

– For i ∈ {1, …,n}, give the share si = (i, f(i)) to the ith participant

9/44

Shamir Secret Sharing

● Correctness: the secret s can be reconstucted from every subset of k shares

– Proof: By the Langrange formula, given k points (xi, yi), for i = 1, ... ,k

– and consequently

● Secrecy (perfect): Any subset of up to k − 1 shares does not leak any
information on the secret

– Proof: Given k – 1 shares (xi, yi) every candidate secret s’∈ Zp corresponds to a
unique polynomial of degree k-1 for which f(0)=s’. For all s’ ∈ Zp the
probabilities Pr[s’ = s] are equal.

10/44

Threshold Encryption

Dealer

Secret key sPublic key pk

s1

s2

s3

s4s5

c c

c c

c ←Encpk(m)

m

m m

m

11/44

Threshold ElGamal Encryption

● Let z be the ElGamal secret key and h:=gz the public key (we work in a
group G of prime order q generated by g).

● Every participant i receives a share si = (i, yi) of z obtained from Shamir
(k,n)-threshold secret sharing

● We observe (notice that Δj are publicly computable) that

● Given an ElGamal ciphertext (c1, c2) = (gr, mhr) we assume a honst set X
of t participants

– Every participant j in X broadcasts wj := (c1)yj

– Everyone in X can recover the plaintext as

Correctness:

12/44

Threshold Cryptography: Remarks

● We have assumed that the parties participating in the decryption are
honest
– Malicious parties can enforce an incorrect result by publishing a

malformed wj value

– Can be prevented by forcing the parties to prove that the wj values are
well formed (i.e., by attaching a non-interactive zero-knowledge proof)

● Can come up with threshold versions of various signature schemes
– Schnorr, (EC)DSA, etc.

– Somewhat hot topic today (cryptocurrencies)

13/44

Multiparty Computation

● We have seen a very specific functionality computed in a distributed
way without requiring the participants to reveal their secret inputs

● Can we do every computation in such a threshold manner? Yes!

f, x1

f, x2
f, x3

f, x4f, x5

y=f(x1,...x5)

y=f(x1,...x5)
y=f(x1,...x5)

y=f(x1,...x5)

y=f(x1,...x5)

14/44

Multiparty Computation

● We look at Ben-Or, Goldwasser, Wigderson (BGW) in a finite field Zp

– Every possible function in Zp is a polynomial

– We need to show how we can do addition and multiplication

● BGW is a general MPC protocol that provides information theoretic
guarantees
– in the presence of semi-honest adversaries controlling a minority of

parties (< n/2)

– in the presence of malicious adversaries controlling less than a third of
the parties (< n/3).

15/44

Multiparty Computation

● Use Shamir’s (k,n)-threshold secret sharing with k > n/2 (honest
majority)

● Every party i has a secret si and polynomial fi(0) = si

● Every party j holds shares fi(j), i ≠j,

● Addition: Given f1(j) and f2(j) just add the shares: participants then
share the polynomial f1 + f2 with (f1 + f2)(0) = s1 + s2.

● Multiplication: if h = (f1 · f2) then h(0) = s1 · s2

– However, h would have degree deg f1 + deg f2 = 2k − 2

– Coefficients of h are not uniformly random

– After every multiplication the parties perform a simple protocol that
reduces the degree of h and adds uniformly random values to all
coefficients of h, except to h0

16/44

Multiparty Computation

● Very hot and active topic nowadays

17/44

Puncturable Encryption

● Public key encryption with “update capabilities” on the secret key
● Secret key can be punctured on ciphertext s.t. this ciphertext can no

longer be decrypted

18/44

Perfect Forward Secrecy

time

k1

k2

k3

k4

19/44

Puncturable Encryption: Application fs 0-RTT Key Exchange

Can we already send encrypted payload with the first message?

Desired properties:
● Replay protection
● Forward secrecy

20/44

Puncturable Encryption: Application fs 0-RTT Key Exchange

21/44

Puncturable Encryption: Application fs 0-RTT Key Exchange

Use of puncturable encryption [GM15, GHJL17, DJSS18]

22/44

Puncturable Encryption

● We are looking at one construction idea
– Construct a scheme with non-negligible correctness error: does not

matter too much for key-exchange
● E.g., 1 in 1000 sessions fail (can then fallback to 1-RTT)

● The most basic construction is called Bloom Filter Encryption (BFE)
– Bloom Filter: data structure for probabilistic set membership checks

23/44

Puncturable Encryption: Bloom Filters

24/44

Puncturable Encryption: Bloom Filters

25/44

Puncturable Encryption: Bloom Filters

26/44

Puncturable Encryption: Bloom Filters

27/44

Puncturable Encryption: Bloom Filters

28/44

Puncturable Encryption: Bloom Filters

29/44

Puncturable Encryption: Bloom Filters

30/44

Puncturable Encryption: Bloom Filters

31/44

Puncturable Encryption: BFE Construction

32/44

Puncturable Encryption: BFE Construction

33/44

Puncturable Encryption: BFE Construction

34/44

Puncturable Encryption: BFE Construction

35/44

Puncturable Encryption: BFE Construction

36/44

Puncturable Encryption: BFE Construction

37/44

Puncturable Encryption: Bloom Filters

38/44

Puncturable Encryption: Bloom Filters

39/44

Puncturable Encryption: Bloom Filters

40/44

Puncturable Encryption: Bloom Filters

41/44

Puncturable Encryption: Bloom Filters

42/44

Puncturable Encryption: Bloom Filters

43/44

Puncturable Encryption: Bloom Filters

● Maximum # of elements in BF: 220

– ≈ 212 puncturings/day for full year

● False positive probability: 10−3

● BF size m = n · ln p/(ln 2)2 ≈ 2MB
● # hash functions k = ⌈m/n · ln 2⌉ = 10

● Constructions from different primitives
– Identity-based encryption (IBE), Attribute-based encryption (ABE)

– Identity-based broadcast encryption (IBBE)

44/44

The End

● Thank you all for participating in the course! It was a lot of fun!

● If you are interested in summer internships/bachelor/master projects
please just contact me

Good luck for the final exam!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

