
Daniel Slamanig

Modern Cryptography: Lecture 13
Digital Signatures

2/26

Organizational

● Where to find the slides and homework?
– https://danielslamanig.info/ModernCrypto19

● How to contact me?
– daniel.slamanig@ait.ac.at

● Tutors: Guillermo Perez, Karen Klein
– guillermo.pascualperez@ist.ac.at; karen.klein@ist.ac.at

● Official page at TU, Location etc.
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid

=417&courseNr=192062&semester=2019W

● Tutorial, TU site
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid

=246&courseNr=192063

● Exam for the second part: Thursday 30.01.2020 15:00-17:00 (Tutorial
slot)

https://danielslamanig.info/ModernCrypto19
mailto:daniel.slamanig@ait.ac.at
mailto:guillermo.pascualperez@ist.ac.at
mailto:karen.klein@ist.ac.at
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid=417&courseNr=192062&semester=2019W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid=417&courseNr=192062&semester=2019W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid=246&courseNr=192063
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid=246&courseNr=192063

3/26

Overview Digital Signatures

secret key skA

public key pkA

public key pkAInsecure channel

A: pkA

(m, σ)

σ := SigskA(m) b := VrfypkA(m, σ)

/
message m

4/26

Digital Signatures: Intuitive Properties

Can be seen as the public-key analogue of MACs with public
verifiability

● Integrity protection: Any modification of a signed message can be
detected

● Source authenticity: The sender of a signed message can be identified
● Non-repudiation: The signer cannot deny having signed (sent) a

message

Security (intuition): should be hard to come up with a signature for a
message that has not been signed by the holder of the private key

5/26

Digital Signatures: Applications

Digital signatures have many applications and are at the heart of
implementing public-key cryptography in practice

● Issuing certificates by CAs (Public Key Infrastructures): binding of
identities to public keys

● Building authenticated channels: authenticate parties (servers) in
security protocols (e.g., TLS) or secure messaging (WhatsApp, Signal, ...)

● Code signing: authenticate software/firmware (updates)
● Sign documents (e.g., contracts): Legal regulations define when digital

signatures are equivalent to handwritten signatures
● Sign transactions: used in the cryptocurrency realm
● etc.

6/26

Digital Signatures: Definition

DEFINITION 12.1 A (digital) signature scheme is a triple of PPT algorithms
(Gen, Sig, Vrfy) such that:

1. The key-generation algorithm Gen takes as input the security parameter
1n and outputs a pair of keys (pk, sk) (we assume that pk and sk have
length n and that n can be inferred from pk or sk).
2. The signing algorithm Sig takes as input a private key sk and a message
 m from some message space M. It outputs a signature σ, and we write
this as σ ← Sigsk(m).

3. The deterministic verification algorithm Vrfy takes as input a public key
Pk, a message m, and a signature σ. It outputs a bit b with b=1 meaning
valid and b=0 meaning invalid. We write this as b := Vrfypk(m, σ).

It is required that, except possibly with negligible probability over
(pk, sk) ← Gen(1n), we have

Vrfypk(m, Sigsk(m)) = 1

for any message m ∈ M.

7/26

Some Remarks on the Definition

● The signing algorithm
– may be deterministic or probabilistic

– may be stateful or stateless (latter is the norm)

● The deterministic verification algorithm may be perfectly correct
(never fails) or may fail with negligible probability

● Every instance has an associated message space M (which we assume
to be implicitly defined when seeing the public key)
– If there is a function k such that the message space is {0, 1}k(n) (with n

being the security parameter), then the signature scheme supports
message length k(n)

– We will later see how we can generically construct signature schemes for
arbitrary message spaces from any scheme that supports messages of
length k(n)

8/26

Formal Security Notions for Digital Signatures

● Attack model (increasing strength)
– No-message attack (NMA): Adversary only sees public key

– Random message attack (RMA): Adversary can obtain signatures for random
messages (not in the control of the adversary)

– Non-adaptive chosen message attack (naCMA): Adversary defines a list of
messages for which it wants to obtain signatures (before it sees the public
key)

– Chosen message attack (CMA): Adversary can adaptively ask for signatures on
messages of its choice

9/26

Formal Security Notions for Digital Signatures

● Goal of an adversary (decreasing hardness)
– Universal forgery (UF): Adversary is given a target message for which it needs

to output a valid signature

– Existential forgery (EF): Adversary outputs a signature for a message of the
adversary’s choice

● Security notion: attack model + goal of the adversary

● For schemes used in practice: Adversary can not even achieve the weakest
goal in the strongest attack model
– EUF-CMA: existential unforgeability under chosen message attacks

10/26

EUF-CMA Security

A signature scheme scheme Σ = (Gen, Sig, Vrfy) is existentially unforgeabily
under chosen message attacks (EUF-CMA) secure, if for all PPT adversaries
A there is a negligible function negl s.t.

Pr[Sig-forgeA,Σ(n)=1] ≤ negl(n) .
euf-cma

11/26

Some Remarks on the Definition

● One-time vs. many-time signatures
– The number of queries to the oracle may be limited, i.e., only a single

query is allowed vs. arbitrary many are allowed

● Weak vs. strong unforgeability
– In case of strong unforgeability the adversary wins if it outputs a valid

signature even for a queried message, but the signature differs from the
one obtained from the oracle

● Oracle records (mi,σi) and winning condition is: (m*,σ*) ∉ Q

● Not achievable for re-randomizable signature schemes

– We consider only standard (weak) unforgeability

12/26

RSA Signatures

● KeyGen: On input 1n pick two random n-bit primes p,q, set N = pq, pick
e s.t. gcd(e, φ(N)) = 1, compute d := e−1 mod φ(N) output (sk, pk) := ((d ,
N), (e ,N))

● Sign: On input m ∈ ZN* and sk = (d, N), compute and output

σ := md mod N

● Vrfy: On input a public key pk = (e, N), a message m ∈ ZN* and a
signature σ ∈ ZN* output 1 if and only if

m := σe mod N

13/26

RSA Signatures

● To forge signature of a message m, the adversary, given N, e but not d,
must compute md mod N, meaning invert the RSA function at m.

● As RSA is one-way so this task should be hard and the scheme should
be secure. Correct?

● Of course not…
● No-message attacks

1) Output forgery (m*, σ*) := (1, 1). Valid since 1d = 1 mod N

2) Choose σ ∈ ZN* and compute m := σe mod N

● EUF-CMA attack

– Ask signatures σ1, σ2 for m1,m2 ∈ ZN* and output (m*, σ*) := (m1 · m2

mod N, σ1 · σ2 mod N)

Even if it would be secure, a message space of ZN* is not desirable!

14/26

Extending the Message Space

● Block-wise signing

– Consider m := (m1,…, mn) with mi ∈ M and compute σ := (σ1,…, σn)

– Need to take care to avoid mix-and-match attacks (block reordering,
exchanging blocks from different signatures, etc.)

– Inefficient for large messages (one invocation of the scheme per block)

● Hash-and-sign
– Compress arbitrarily long message before signing by hashing them to a

fixed length string using a hash function H

– The range of H needs to be compatible with the message space of the
signature scheme

15/26

Hash-and-Sign Paradigm (Construction 12.3)

● Let Σ = (Gen, Sign, Vrfy) be a signature scheme for messages of length
k(n), and let Γ = (GenH, H) be a hash function with output length k(n).
Construct signature scheme Σ’ = (Gen’ , Sign’ , Vrfy’) as follows:

– Gen’: on input 1n , run Gen(1n) to obtain (pk, sk) and run GenH(1n) to
obtain s; the public key is (pk, s) and the private key is (sk, s).

– Sign’: on input a private key (sk, s) and a message m ∈ {0, 1}* ,
output σ ← Signsk(H(s, m)).

– Vrfy’: on input a public key (pk, s), a message m ∈ {0, 1}*, and a
signature σ, output 1 if and only if Vrfypk(H(s, m), σ) = 1.

THEOREM 12.4: If Σ is a secure signature scheme for messages of length
k and Γ is collision resistant, then Σ’ is a secure signature scheme
(for arbitrary-length messages).

16/26

Hash-and-Sign Paradigm

● Proof Idea

– Let m1 ,... , mq be the messages queried by A and (m*, σ*) the valid forgery

● Case 1: H(s, m*) = H(s, mi) for some i ∈ [q] : we have a collision for H

● Case 2: H(s, m*) ≠ H(s, mi) for all i ∈ [q] : we have that (H(s, m*), σ*) is a
forgery for Σ

● Hash-and-sign in practice
– Used by signature schemes used in practice (RSA PKCS#1 v1.5 signatures,

Schnorr, (EC)DSA, …)

– Recall that we consider H to be keyed for theoretical reasons and in
practice H would be any “good” collision-resistant hash function, e.g., SHA-3

17/26

RSA FDH Signatures

● Can we simply apply the hash-and-sign paradigm to RSA?
– No, not assuming collision resistant hashing (or any other reasonable standard

property of a hash function), as the underlying textbook RSA signature scheme
does not provide any meaningful security

● But, we can apply the idea of hash-and-sign and model the hash function as a
random oracle!
– RSA Full Domain Hash (RSA-FDH)

– The random oracle is collision resistant and destroys other “dangerous” algebraic
properties

– Important that range of H is (close to) ZN*

– H constructed via repeated application of an underlying cryptographic hash
function such as SHA-3

● Never say “signing = d/encrypt the hash” when talking about signing (with RSA)!
– “Misunderstanding” due to commutativity of RSA private and public key operation

– Other signature schemes do usually not allow any such analogy

18/26

RSA FDH Signatures (Construction 12.6)

● KeyGen: On input 1n pick two random n-bit primes p,q, set N = pq, pick e
s.t. gcd(e, φ(N)) = 1, compute d := e−1 mod φ(N) output (sk, pk) := ((d , N),
(e ,N)). As part of the key generation a hash function H: {0, 1}* → ZN* is
specified (but we leave this implicit).

● Sign: On input m ∈ {0, 1}* and sk = (d, N) , compute and output

σ := H(m)d mod N

● Vrfy: On input a public key pk = (e, N), a message m ∈ {0, 1}* and a
signature σ ∈ ZN* output 1 if and only if

H(m) := σe mod N

THEOREM 12.7: If the RSA problem is hard relative to GenRSA and H
is modeled as a random oracle, then RSA-FDH is EUF-CMA secure.

19/26

RSA FDH Signatures (Proof Sketch – Naive Strategy)

● We again use the power of random oracles and reduce the EUF-CMA security to
the RSA assumption

● We have to simulate signing queries without knowing the private key
– Use the idea of the previously seen no-message attack against texbook RSA (i.e,

choose a signature and compute the message)

– We randomly choose an index i ∈ [qH] (the number of queries to H)

● In the i’th query we will embed the RSA instance (N, e, y)

– If adversary queries H for mj

● j≠ i: choose σj ←$ ZN* and set H(mj) := σj
e mod N, record (mj, σj , H(mj)) and

return σj

● j=i: return y

– If adversary queries a signature for mj

● j=i: abort (our guess was wrong)
● j≠ i: retrieve (mj, σj , H(mj)) and return σj

● Adversary outputs (m*, σ*), and if m* = mi and σ*e = y mod N , then output σ

20/26

Signatures in the Discrete Logarithm Setting

● We look at two popoluar schemes: Schnorr and DSA/ECDSA
● Both schemes can be viewed as signatures obtained from 3-move

identification schemes
● Schnorr signatures

– Applying the Fiat-Shamir
heuristic: r computed as
H(I, m) with H modeled as RO

– Can be viewed as a non-inter-
active zero-knowledge proof
of knowledge of a discrete
logarithm (the private key)

● DSA/ECDSA
– Uses a different transform then Fiat-Shamir (but similar idea)

21/26

Schnorr Signatures

● KeyGen: run G(1n) to obtain (G, q, g). Choose x ←$ Zq and set y := gx . The
private key is x and the public key is (G, q, g, y). As part of key generation, a
function H : {0, 1}* → Zq is specified.

● Sign: on input a private key x and a message m ∈ {0, 1}*, choose k ←$ Zq
and compute

– I := gk

– r := H(I, m) and

– s := rx + k mod q

Output the signature σ:= (r, s).

● Vrfy: on input a public key (G, q, g, y), a message m ∈ {0, 1}*, and a signature
σ = (r, s), compute I := gs · y−r and output 1 if H(I, m) = r.

Correctness: gs · y−r = grx + k· g-xr = gk = I

THEOREM: If the discrete-logarithm problem is hard relative to G and H is
a random oracle, then the Schnorr signature scheme is EUF-CMA secure.

22/26

DSA/ECDSA

● KeyGen: run G(1n) to obtain (G, q, g). Choose x ←$ Zq and set y := gx . The private key is
x and the public key is (G, q, g, y). As part of key generation, two functions H : {0, 1}* →
Zq and F : G → Zq are specified.

● Sign: on input a private key x and a message m ∈ {0, 1}*, choose k ←$ Zq and compute

– r := F(gk)

– s := k-1(H(m)+rx) mod q (If r = 0 or k=0 or s = 0 then start again with a fresh choice
of k)

Output the signature σ:= (r, s).

● Vrfy: on input a public key (G, q, g, y), a message m ∈ {0, 1}*, and a signature σ = (r, s)
with r, s ≠ 0 mod q, compute u=s-1 mod q output 1 if r = F(gH(m)u yru).

● DSA works in a prime order q subgroup of Zp* and F(I) = I mod q.

● ECDSA works in elliptic curves. In case of a prime order q subgroup of E(Zp) and I=(x, y), F(I) = x
mod q

● If H and F modeled as random oracles, EUF-CMA secuirty can be proven under DL. But for
these concrete forms above no security proof is known.

23/26

Schnorr, DSA/ECDSA Practical Aspects

● Bad randomness (Sony PS3 2010)
– Recall in Schnorr: s := rx + k mod q with r:= H(gk, m)

– Signing two messages m, m’ with m≠m’ with same k yields

 s = rx + k mod q and s’ = r’x + k mod q

 s – rx = s’ - r’x mod q

 x = (s’ - s)(r’ - r)-1 mod q

● Also practical attacks if the randomness is biased (https://eprint.iacr.org/2019/023)
● Countermeasure: make them deterministic (RFC 6979, EdDSA)

– Compute k:= D(sk, m)

– Solves problem above, but opens up possibility for fault attacks
● Trigger signing same message twice, trigger a fault in one run in m when computing

H(m). The old attack then applies.
● Countermeasure? Verification before outputting a signature, etc.

https://eprint.iacr.org/2019/023

24/26

One-Time Signatures (Lamport)

● Let H be a one-way function and assume 3-bit messages
● Private key is matrix of uniformly random values from the domain of H
● Public key is the matrix of images of sk elements under H

From any one-way functions (e.g., hash functions):

Various techniques exist to obtain (stateful) many-times signatures

25/26

One-Time Signatures

● KeyGen: run G(1n) to obtain (G, q, g). Choose x, y ←$ Zq and set h := gx

and c:=gy. The private key is (x, y) and the public key is (G, q, g, h, c).

● Sign: on input a private key (x, y) and a message m ∈ Zq, compute and
output σ:= (y-m)x-1 mod q.

● Vrfy: on input a public key (G, q, g, h, c), a message m ∈ Zq, and a
signature σ output 1 if c=gmhσ.

THEOREM: If the discrete-logarithm problem is hard relative to G, then
the signature scheme is EUF-1-naCMA secure.

Correctness: gmhσ = gm+xσ = gm+x((y−m)/x) = gy = c.

From a concrete hardness assumption (DL):

26/26

Generic Compilers for Strong Security

● CMA from RMA
– RMA scheme with message space k + q(k) and resulting CMA scheme with

message space q(k)

– For m ∈ {0, 1}* choose uniformaly random mL ←$ {0, 1}q and compute mR =
mL m. Thus we have m = m⊕ m. Thus we have m = m L ⊕ m. Thus we have m = m mR (with both parts uniformly random)

– Choose r ←$ {0, 1}k and sign r||mL and r||mR with two independent keys
skL and skR of ΣRMA

● CMA from naCMA
– Let Σ be a naCMA-secure scheme, Σ’ be a naCMA-secure one-time

scheme. Generate a long-term key-pair for Σ

– For message m generate one-time key of Σ’ and sign m with one-time key.
Sign one-time public key using long-term signing key

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

