Modern Cryptography: Lecture 13 Digital Signatures

Daniel Slamanig

Organizational

- Where to find the slides and homework?
- https://danielslamanis.info/ModernCrypto19
- How to contact me?
- daniel.slamanig@ait.ac.at
- Tutors: Guillermo Perez, Karen Klein
- guillermo.pascualperez@ist.ac.at; karen.klein@ist.ac.at
- Official page at TU, Location etc.
- https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463\&dsrid =417\&courseNr=192062\&semester=2019W
- Tutorial, TU site
- https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593\&dsrid =246\&courseNr=192063
- Exam for the second part: Thursday 30.01.2020 15:00-17:00 (Tutorial slot)

Overview Digital Signatures

message m

secret key $s k_{A}$ public key $p k_{A}$

$$
\sigma:=\operatorname{Sig}_{\text {skA }}(m)
$$

(m, σ)

Insecure channel

- A: $p k_{A}$

Digital Signatures: Intuitive Properties

Can be seen as the public-key analogue of MACs with public verifiability

- Integrity protection: Any modification of a signed message can be detected
- Source authenticity: The sender of a signed message can be identified
- Non-repudiation: The signer cannot deny having signed (sent) a message

Security (intuition): should be hard to come up with a signature for a message that has not been signed by the holder of the private key

Digital Signatures: Applications

Digital signatures have many applications and are at the heart of implementing public-key cryptography in practice

- Issuing certificates by CAs (Public Key Infrastructures): binding of identities to public keys
- Building authenticated channels: authenticate parties (servers) in security protocols (e.g., TLS) or secure messaging (WhatsApp, Signal, ...)
- Code signing: authenticate software/firmware (updates)
- Sign documents (e.g., contracts): Legal regulations define when digital signatures are equivalent to handwritten signatures
- Sign transactions: used in the cryptocurrency realm
- etc.

Digital Signatures: Definition

DEFINITION 12.1 A (digital) signature scheme is a triple of PPT algorithms (Gen, Sig, Vrfy) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1^{n} and outputs a pair of keys (pk, sk) (we assume that pk and sk have length n and that n can be inferred from pk or sk).
2. The signing algorithm Sig takes as input a private key sk and a message m from some message space \mathbf{M}. It outputs a signature σ, and we write this as $\sigma \leftarrow \operatorname{Sig}_{\text {sk }}(m)$.
3. The deterministic verification algorithm Vrfy takes as input a public key $P k$, a message m, and a signature σ. It outputs a bit b with $b=1$ meaning valid and $b=0$ meaning invalid. We write this $a s b:=\operatorname{Vrfy}_{\text {pk }}(m, \sigma)$.

It is required that, except possibly with negligible probability over $(\mathrm{pk}, \mathrm{sk}) \leftarrow \operatorname{Gen}\left(1^{\mathrm{n}}\right)$, we have

$$
\operatorname{Vrfy}_{p k}\left(m, \operatorname{Sig}_{s k}(m)\right)=1
$$

for any message $m \in M$.

Some Remarks on the Definition

- The signing algorithm
- may be deterministic or probabilistic
- may be stateful or stateless (latter is the norm)
- The deterministic verification algorithm may be perfectly correct (never fails) or may fail with negligible probability
- Every instance has an associated message space M (which we assume to be implicitly defined when seeing the public key)
- If there is a function k such that the message space is $\{0,1\} k(n)$ (with n being the security parameter), then the signature scheme supports message length $k(n)$
- We will later see how we can generically construct signature schemes for arbitrary message spaces from any scheme that supports messages of length $\mathrm{k}(\mathrm{n})$

Formal Security Notions for Digital Signatures

- Attack model (increasing strength)
- No-message attack (NMA): Adversary only sees public key
- Random message attack (RMA): Adversary can obtain signatures for random messages (not in the control of the adversary)
- Non-adaptive chosen message attack (naCMA): Adversary defines a list of messages for which it wants to obtain signatures (before it sees the public key)
- Chosen message attack (CMA): Adversary can adaptively ask for signatures on messages of its choice

Formal Security Notions for Digital Signatures

- Goal of an adversary (decreasing hardness)
- Universal forgery (UF): Adversary is given a target message for which it needs to output a valid signature
- Existential forgery (EF): Adversary outputs a signature for a message of the adversary's choice
- Security notion: attack model + goal of the adversary
- For schemes used in practice: Adversary can not even achieve the weakest goal in the strongest attack model
- EUF-CMA: existential unforgeability under chosen message attacks

EUF-CMA Security

$\mathcal{A} \quad, \sigma_{i}$
$\sigma_{i} \leftarrow \operatorname{Sign}_{\mathrm{sk}}\left(m_{i}\right)$ $Q \leftarrow Q \cup\left\{m_{i}\right\}$
$(\mathrm{pk}, \mathrm{sk}) \stackrel{\$}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$

$$
\left(m^{*}, \sigma^{*}\right)
$$

$$
\text { if Vrfy }{ }_{\text {pk }}\left(m^{*}, \sigma^{*}\right)=1 \wedge
$$

$$
m^{*} \notin Q
$$

return 1
else return 0

A signature scheme scheme $\Sigma=$ (Gen, Sig, Vrfy) is existentially unforgeabily under chosen message attacks (EUF-CMA) secure, if for all PPT adversaries A there is a negligible function negl s.t.
euf-cma

$$
\operatorname{Pr}\left[\text { Sig-forge }_{A, \Sigma}(n)=1\right] \leq \operatorname{negl}(n) .
$$

Some Remarks on the Definition

- One-time vs. many-time signatures
- The number of queries to the oracle may be limited, i.e., only a single query is allowed vs. arbitrary many are allowed
- Weak vs. strong unforgeability
- In case of strong unforgeability the adversary wins if it outputs a valid signature even for a queried message, but the signature differs from the one obtained from the oracle
- Oracle records $\left(m_{i}, \sigma_{i}\right)$ and winning condition is: $\left(m^{*}, \sigma^{\star}\right) \notin Q$
- Not achievable for re-randomizable signature schemes
- We consider only standard (weak) unforgeability

RSA Signatures

- KeyGen: On input 1 n pick two random n-bit primes p, q, set $\mathrm{N}=\mathrm{pq}$, pick e s.t. $\operatorname{gcd}(\mathrm{e}, \varphi(\mathrm{N}))=1$, compute $\mathrm{d}:=\mathrm{e}^{-1} \bmod \varphi(\mathrm{~N})$ output $(\mathrm{sk}, \mathrm{pk}):=((\mathrm{d}$, N), (e , N))
- Sign: On input $m \in Z_{N}{ }^{*}$ and $s k=(d, N)$, compute and output

$$
\sigma:=m^{d} \bmod N
$$

- Vrfy: On input a public key $p k=(e, N)$, a message $m \in Z_{N}{ }^{*}$ and a signature $\sigma \in Z_{N}{ }^{*}$ output 1 if and only if

$$
m:=\sigma^{e} \bmod N
$$

RSA Signatures

- To forge signature of a message m, the adversary, given N, e but not d, must compute $\mathrm{m}^{d} \bmod \mathrm{~N}$, meaning invert the RSA function at m .
- As RSA is one-way so this task should be hard and the scheme should be secure. Correct?
- Of course not...
- No-message attacks

1) Output forgery $\left(m^{*}, \sigma^{*}\right):=(1,1)$. Valid since $1 d=1 \bmod N$
2) Choose $\sigma \in Z_{N}{ }^{*}$ and compute $m:=\sigma^{e} \bmod N$

- EUF-CMA attack
- Ask signatures σ_{1}, σ_{2} for $m_{1}, m_{2} \in Z_{N}{ }^{*}$ and output ($\left.m^{*}, \sigma^{*}\right):=\left(m_{1} \cdot m_{2}\right.$ $\left.\bmod \mathrm{N}, \sigma_{1} \cdot \sigma_{2} \bmod \mathrm{~N}\right)$

Even if it would be secure, a message space of $\mathbf{Z}_{N}{ }^{*}$ is not desirable!

Extending the Message Space

- Block-wise signing
- Consider $m:=\left(m_{1}, \ldots, m_{n}\right)$ with $m_{i} \in M$ and compute $\sigma:=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$
- Need to take care to avoid mix-and-match attacks (block reordering, exchanging blocks from different signatures, etc.)
- Inefficient for large messages (one invocation of the scheme per block)
- Hash-and-sign
- Compress arbitrarily long message before signing by hashing them to a fixed length string using a hash function H
- The range of H needs to be compatible with the message space of the signature scheme

Hash-and-Sign Paradigm (Construction 12.3)

- Let $\Sigma=($ Gen, Sign, Vrfy) be a signature scheme for messages of length $k(n)$, and let $\Gamma=\left(G e n_{H}, H\right)$ be a hash function with output length $k(n)$. Construct signature scheme $\Sigma^{\prime}=(G e n ', ~ S i g n ', ~ V r f y ') ~ a s ~ f o l l o w s: ~$
- Gen': on input 1n, run Gen(1n) to obtain (pk, sk) and run Gen $\mathrm{G}_{H}(1 n)$ to obtain s; the public key is ($p k, s$) and the private key is $(s k, s)$.
- Sign': on input a private key (sk, s) and a message $m \in\{0,1\}^{*}$, output $\sigma \leftarrow \operatorname{Sign}_{\text {sk }}(H(\mathrm{~s}, \mathrm{~m}))$.
- Vrfy': on input a public key (pk, s), a message $m \in\{0,1\}^{*}$, and a signature σ, output 1 if and only if $\operatorname{Vrfy}_{p k}(H(s, m), \sigma)=1$.

THEOREM 12.4: If Σ is a secure signature scheme for messages of length k and Γ is collision resistant, then Σ^{\prime} is a secure signature scheme (for arbitrary-length messages).

Hash-and-Sign Paradigm

- Proof Idea
- Let m_{1}, \ldots, m_{q} be the messages queried by A and (m^{*}, σ^{*}) the valid forgery
- Case 1: $H\left(s, m^{*}\right)=H\left(s, m_{i}\right)$ for some $i \in[q]$: we have a collision for H
- Case 2: $H\left(s, m^{*}\right) \neq H\left(s, m_{i}\right)$ for all $i \in[q]$: we have that $\left(H\left(s, m^{*}\right), \sigma^{*}\right)$ is a forgery for Σ
- Hash-and-sign in practice
- Used by signature schemes used in practice (RSA PKCS\#1 v1.5 signatures, Schnorr, (EC)DSA, ...)
- Recall that we consider H to be keyed for theoretical reasons and in practice H would be any "good" collision-resistant hash function, e.g., SHA-3

RSA FDH Signatures

- Can we simply apply the hash-and-sign paradigm to RSA?
- No, not assuming collision resistant hashing (or any other reasonable standard property of a hash function), as the underlying textbook RSA signature scheme does not provide any meaningful security
- But, we can apply the idea of hash-and-sign and model the hash function as a random oracle!
- RSA Full Domain Hash (RSA-FDH)
- The random oracle is collision resistant and destroys other "dangerous" algebraic properties
- Important that range of H is (close to) $\mathrm{Z}_{\mathrm{N}}{ }^{*}$
- H constructed via repeated application of an underlying cryptographic hash function such as SHA-3
- Never say "signing = d/encrypt the hash" when talking about signing (with RSA)!
- "Misunderstanding" due to commutativity of RSA private and public key operation
- Other signature schemes do usually not allow any such analogy

RSA FDH Signatures (Construction 12.6)

- KeyGen: On input 1 n pick two random n-bit primes p, q, set $\mathrm{N}=\mathrm{pq}$, pick e s.t. $\operatorname{gcd}(\mathrm{e}, \varphi(\mathrm{N}))=1$, compute $\mathrm{d}:=\mathrm{e}^{-1} \bmod \varphi(\mathrm{~N})$ output $(\mathrm{sk}, \mathrm{pk}):=((\mathrm{d}, \mathrm{N})$, (e, N)). As part of the key generation a hash function $H:\{0,1\}^{*} \rightarrow \mathrm{Z}_{\mathrm{N}}{ }^{*}$ is specified (but we leave this implicit).
- Sign: On input $m \in\{0,1\}^{*}$ and $s k=(d, N)$, compute and output

$$
\sigma:=H(m) \mathrm{d} \bmod \mathrm{~N}
$$

- Vrfy: On input a public key $p k=(e, N)$, a message $m \in\{0,1\}^{*}$ and a signature $\sigma \in \mathbf{Z}{ }^{*}$ output 1 if and only if

$$
H(m):=\sigma^{e} \bmod N
$$

THEOREM 12.7: If the RSA problem is hard relative to GenRSA and H is modeled as a random oracle, then RSA-FDH is EUF-CMA secure.

RSA FDH Signatures (Proof Sketch - Naive Strategy)

- We again use the power of random oracles and reduce the EUF-CMA security to the RSA assumption
- We have to simulate signing queries without knowing the private key
- Use the idea of the previously seen no-message attack against texbook RSA (i.e, choose a signature and compute the message)
- We randomly choose an index $i \in\left[q_{H}\right]$ (the number of queries to H)
- In the i'th query we will embed the RSA instance ($\mathrm{N}, \mathrm{e}, \mathrm{y}$)
- If adversary queries H for m_{j}
- $j \neq \mathrm{i}$: choose $\sigma_{j} \leftarrow \$ \mathbf{Z}_{\mathrm{N}}{ }^{*}$ and set $H\left(m_{j}\right):=\sigma_{\mathrm{j}} \mathrm{e} \bmod \mathrm{N}, \operatorname{record}\left(\mathrm{m}_{\mathrm{j}}, \sigma_{\mathrm{j}}, \mathrm{H}\left(\mathrm{m}_{\mathrm{j}}\right)\right)$ and return σ_{j}
- $j=i$: return y
- If adversary queries a signature for m_{j}
- $j=i$: abort (our guess was wrong)
- $j \neq i$: retrieve $\left(m_{j}, \sigma_{j}, H\left(m_{j}\right)\right)$ and return σ_{j}
- Adversary outputs $\left(m^{*}, \sigma^{*}\right)$, and if $m^{*}=m_{i}$ and $\sigma^{\star} e=y \bmod N$, then output σ

Signatures in the Discrete Logarithm Setting

- We look at two popoluar schemes: Schnorr and DSA/ECDSA
- Both schemes can be viewed as signatures obtained from 3-move identification schemes
- Schnorr signatures
- Applying the Fiat-Shamir heuristic: r computed as $\mathrm{H}(\mathrm{I}, \mathrm{m})$ with H modeled as RO
- Can be viewed as a non-interactive zero-knowledge proof of knowledge of a discrete logarithm (the private key)

$\underline{\operatorname{Prover}(s k)}$		$\underline{\text { Verifier }(p k)}$
$(I, \mathrm{st}) \leftarrow \mathcal{P}_{1}(s k) \xrightarrow{I}$		
	r	$r \leftarrow \Omega_{p k}$
$s:=\mathcal{P}_{2}(s k, \mathrm{st}, r)$		
		$\mathcal{V}(p k, r, s) \stackrel{?}{=} I$

- DSA/ECDSA
- Uses a different transform then Fiat-Shamir (but similar idea)

Schnorr Signatures

- KeyGen: run $\mathrm{G}(1 \mathrm{n})$ to obtain $(\mathrm{G}, \mathrm{q}, \mathrm{g})$. Choose $\mathrm{x} \leftarrow \$ \mathbf{Z}_{\mathrm{q}}$ and set y := gx . The private key is x and the public key is ($\mathrm{G}, \mathrm{q}, \mathrm{g}, \mathrm{y}$). As part of key generation, a function $\mathrm{H}:\{0,1\}^{\star} \rightarrow \mathrm{Z}_{\mathrm{q}}$ is specified.
- Sign: on input a private key x and a message $m \in\{0,1\}^{*}$, choose $k \leftarrow \$ \mathbf{Z}_{q}$ and compute
- $1:=g^{k}$
- $\mathrm{r}:=\mathrm{H}(\mathrm{I}, \mathrm{m})$ and
- $\mathrm{s}:=\mathrm{rx}+\mathrm{k} \bmod \mathrm{q}$

Output the signature $\sigma:=(r, s)$.

- Vrfy: on input a public key (G, q, g, y), a message $m \in\{0,1\}^{*}$, and a signature $\sigma=(r, s)$, compute $I:=g^{s} \cdot y^{-r}$ and output 1 if $\mathrm{H}(\mathrm{I}, \mathrm{m})=\mathrm{r}$.

Correctness: $g^{s} \cdot y^{-r}=g^{r x+k} \cdot g^{-x r}=g^{k}=1$
THEOREM: If the discrete-logarithm problem is hard relative to G and H is a random oracle, then the Schnorr signature scheme is EUF-CMA secure.

DSA/ECDSA

- KeyGen: run $G(1 n)$ to obtain (G, q, g). Choose $x \leftarrow \$ Z_{q}$ and set $y:=g^{x}$. The private key is x and the public key is (G, q, g, y). As part of key generation, two functions $H:\{0,1\}^{*} \rightarrow$ Z_{q} and $F: G \rightarrow Z_{q}$ are specified.
- Sign: on input a private key x and a message $m \in\{0,1\}^{*}$, choose $k \leftarrow \$ \mathbf{Z}_{q}$ and compute
- $r:=F\left(g^{k}\right)$
- $s:=k^{-1}(H(m)+r x) \operatorname{modq}(I f r=0$ or $k=0$ or $s=0$ then start again with a fresh choice of k) Output the signature $\sigma:=(r, s)$.
- Vrfy: on input a public key (G, q, g, y), a message $m \in\{0,1\}^{*}$, and a signature $\sigma=(r, s)$ with $r, s \neq 0 \bmod q$, compute $u=s^{-1} \bmod q$ output 1 if $r=F(g h(m) u y r u)$.
- DSA works in a prime order q subgroup of $\mathbf{Z}_{\mathrm{p}}{ }^{*}$ and $\mathrm{F}(\mathrm{I})=1 \bmod \mathrm{q}$.
- ECDSA works in elliptic curves. In case of a prime order q subgroup of $E\left(Z_{p}\right)$ and $I=(x, y), F(I)=x$ $\bmod q$
- If H and F modeled as random oracles, EUF-CMA secuirty can be proven under DL. But for these concrete forms above no security proof is known.

Schnorr, DSA/ECDSA Practical Aspects

- Bad randomness (Sony PS3 2010)
- Recall in Schnorr: $s:=r x+k$ mod q with $r:=H(g k, m)$
- Signing two messages m, m^{\prime} with $m \neq m^{\prime}$ with same k yields

$$
\begin{gathered}
s=r x+k \bmod q \text { and } s^{\prime}=r^{\prime} x+k \bmod q \\
s-r x=s^{\prime}-r^{\prime} x \bmod q \\
x=\left(s^{\prime}-s\right)\left(r^{\prime}-r\right)^{-1} \bmod q
\end{gathered}
$$

- Also practical attacks if the randomness is biased (https://eprint.iacr.org/2019/023)
- Countermeasure: make them deterministic (RFC 6979, EdDSA)
- Compute k:= D(sk, m)
- Solves problem above, but opens up possibility for fault attacks
- Trigger signing same message twice, trigger a fault in one run in m when computing $H(m)$. The old attack then applies.
- Countermeasure? Verification before outputting a signature, etc.

One-Time Signatures (Lamport)

From any one-way functions (e.g., hash functions):

- Let H be a one-way function and assume 3-bit messages
- Private key is matrix of uniformly random values from the domain of H
- Public key is the matrix of images of sk elements under H

$$
p k=\left(\begin{array}{lll}
y_{1,0} & y_{2,0} & y_{3,0} \\
y_{1,1} & y_{2,1} & y_{3,1}
\end{array}\right) \quad s k=\left(\begin{array}{lll}
x_{1,0} & x_{2,0} & x_{3,0} \\
x_{1,1} & x_{2,1} & x_{3,1}
\end{array}\right)
$$

Signing $m=011$:

$$
s k=\left(\begin{array}{ccc}
\begin{array}{|c|c}
x_{1,0} & x_{2,0}
\end{array} & x_{3,0} \\
x_{1,1} & x_{2,1} & x_{3,1}
\end{array}\right) \Rightarrow \sigma=\left(x_{1,0}, x_{2,1}, x_{3,1}\right)
$$

Verifying for $m=011$ and $\sigma=\left(x_{1}, x_{2}, x_{3}\right)$:

$$
\left.p k=\left(\begin{array}{ccc}
\begin{array}{|c|c|}
\hline y_{1,0} & y_{2,0}
\end{array} y_{3,0} \\
\begin{array}{c}
y_{1,1} \\
y_{2,1}
\end{array} & y_{3,1}
\end{array}\right)\right\} \Rightarrow \begin{aligned}
& H\left(x_{1}\right) \stackrel{?}{=} y_{1,0} \\
& H\left(x_{2}\right) \stackrel{?}{=} y_{2,1} \\
& H\left(x_{3}\right) \stackrel{?}{=} y_{3,1}
\end{aligned}
$$

One-Time Signatures

From a concrete hardness assumption (DL):

- KeyGen: run $\mathbf{G}(1 \mathrm{n})$ to obtain (G, q, g). Choose $\mathrm{x}, \mathrm{y} \leftarrow \$ \mathbf{Z}_{\mathrm{q}}$ and set $\mathrm{h}:=\mathrm{gx}$ and $\mathrm{c}:=\mathrm{gy}$. The private key is (x, y) and the public key is ($\mathrm{G}, \mathrm{q}, \mathrm{g}, \mathrm{h}, \mathrm{c}$).
- Sign: on input a private key (x, y) and a message $m \in Z_{q}$, compute and output $\sigma:=(y-m) x^{-1} \bmod q$.
- Vrfy: on input a public key (G, q, g, h, c), a message $m \in Z_{q}$, and a signature σ output 1 if $\mathrm{c}=$ gmh m.

Correctness: $g^{m} h^{\sigma}=g^{m+x \sigma}=g^{m+x((y-m) / x)}=g^{y}=c$.

THEOREM: If the discrete-logarithm problem is hard relative to G , then the signature scheme is EUF-1-naCMA secure.

Generic Compilers for Strong Security

- CMA from RMA
- RMA scheme with message space $\mathrm{k}+\mathrm{q}(\mathrm{k})$ and resulting CMA scheme with message space $q(k)$
- For $m \in\{0,1\}^{*}$ choose uniformaly random $m_{L} \leftarrow \$\{0,1\} q$ and compute $m_{R}=$ $m_{L} \oplus m$. Thus we have $m=m_{L} \oplus m_{R}$ (with both parts uniformly random)
- Choose $r \leftarrow \$\{0,1\}^{k}$ and sign $r \| m_{L}$ and $r \| m_{R}$ with two independent keys $s k_{L}$ and $s k_{R}$ of $\Sigma_{\text {RMA }}$
- CMA from naCMA
- Let Σ be a naCMA-secure scheme, Σ^{\prime} be a naCMA-secure one-time scheme. Generate a long-term key-pair for Σ
- For message m generate one-time key of Σ^{\prime} and sign m with one-time key. Sign one-time public key using long-term signing key

