Modern Cryptography: Lecture 13 Digital Signatures

Daniel Slamanig

Organizational

- Where to find the slides and homework?
 - https://danielslamanig.info/ModernCrypto19
- How to contact me?
 - daniel.slamanig@ait.ac.at
- Tutors: Guillermo Perez, Karen Klein
 - guillermo.pascualperez@ist.ac.at; karen.klein@ist.ac.at
- Official page at TU, Location etc.
 - https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid =417&courseNr=192062&semester=2019W
- Tutorial, TU site
 - https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid =246&courseNr=192063
- Exam for the second part: Thursday 30.01.2020 15:00-17:00 (Tutorial slot)

Overview Digital Signatures

Digital Signatures: Intuitive Properties

Can be seen as the public-key analogue of MACs with <u>public</u> <u>verifiability</u>

- Integrity protection: Any modification of a signed message can be detected
- Source authenticity: The sender of a signed message can be identified
- Non-repudiation: The signer cannot deny having signed (sent) a message

<u>Security (intuition)</u>: should be hard to come up with a signature for a message that has not been signed by the holder of the private key

Digital signatures have many applications and are at the heart of implementing public-key cryptography in practice

- Issuing certificates by CAs (Public Key Infrastructures): binding of identities to public keys
- Building authenticated channels: authenticate parties (servers) in security protocols (e.g., TLS) or secure messaging (WhatsApp, Signal, ...)
- Code signing: authenticate software/firmware (updates)
- Sign documents (e.g., contracts): Legal regulations define when digital signatures are equivalent to handwritten signatures
- Sign transactions: used in the cryptocurrency realm
- etc.

<u>DEFINITION 12.1</u> A (digital) signature scheme is a triple of PPT algorithms (Gen, Sig, Vrfy) such that:

1. <u>The **key-generation** algorithm **Gen**</u> takes as input the security parameter 1ⁿ and outputs a pair of keys (pk, sk) (we assume that pk and sk have length n and that n can be inferred from pk or sk).

2. <u>The signing algorithm Sig</u> takes as input a private key sk and a message m from some message space **M**. It outputs a signature σ , and we write this as $\sigma \leftarrow \text{Sig}_{sk}(m)$.

3. <u>The deterministic **verification** algorithm **Vrfy** takes as input a public key Pk, a message m, and a signature σ. It outputs a bit b with b=1 meaning valid and b=0 meaning invalid. We write this as b := Vrfy_{pk}(m, σ).</u>

It is required that, except possibly with negligible probability over $(pk, sk) \leftarrow Gen(1^n)$, we have

 $Vrfy_{pk}(m, Sig_{sk}(m)) = 1$

for any message $m \in M$.

- The <u>signing</u> algorithm
 - may be deterministic or probabilistic
 - may be stateful or stateless (latter is the norm)
- The deterministic v<u>erification</u> algorithm may be perfectly correct (never fails) or may fail with negligible probability
- Every instance has an associated <u>message space</u> M (which we assume to be implicitly defined when seeing the public key)
 - If there is a function k such that the message space is {0, 1}^{k(n)} (with n being the security parameter), then the signature scheme supports message length k(n)
 - We will later see how we can generically construct signature schemes for arbitrary message spaces from any scheme that supports messages of length k(n)

Formal Security Notions for Digital Signatures

- <u>Attack model (increasing strength)</u>
 - No-message attack (NMA): Adversary only sees public key
 - Random message attack (RMA): Adversary can obtain signatures for random messages (not in the control of the adversary)
 - Non-adaptive chosen message attack (naCMA): Adversary defines a list of messages for which it wants to obtain signatures (before it sees the public key)
 - Chosen message attack (CMA): Adversary can adaptively ask for signatures on messages of its choice

Formal Security Notions for Digital Signatures

- <u>Goal of an adversary (decreasing hardness)</u>
 - Universal forgery (UF): Adversary is given a target message for which it needs to output a valid signature
 - Existential forgery (EF): Adversary outputs a signature for a message of the adversary's choice
- Security notion: <u>attack model + goal of the adversary</u>
- For schemes used in practice: Adversary can not even achieve the weakest goal in the strongest attack model
 - EUF-CMA: existential unforgeability under chosen message attacks

EUF-CMA Security

A signature scheme scheme Σ = (Gen, Sig, Vrfy) is existentially unforgeabily under chosen message attacks (EUF-CMA) secure, if for all PPT adversaries **A** there is a negligible function negl s.t.

> euf-cma $Pr[Sig-forge_{A,\Sigma}(n)=1] \le negl(n)$.

Some Remarks on the Definition

• <u>One-time vs. many-time signatures</u>

- The number of queries to the oracle may be limited, i.e., only a single query is allowed vs. arbitrary many are allowed
- <u>Weak vs. strong unforgeability</u>
 - In case of strong unforgeability the adversary wins if it outputs a valid signature even for a queried message, but the signature differs from the one obtained from the oracle
 - Oracle records (m_i,σ_i) and winning condition is: $(m^*,\sigma^*) \notin \mathbf{Q}$
 - Not achievable for re-randomizable signature schemes
 - We consider only standard (weak) unforgeability

- <u>KeyGen</u>: On input 1ⁿ pick two random n-bit primes p,q, set N = pq, pick e s.t. gcd(e, φ(N)) = 1, compute d := e⁻¹ mod φ(N) output (sk, pk) := ((d, N), (e, N))
- Sign: On input $m \in \mathbb{Z}_N^*$ and sk = (d, N), compute and output

 $\sigma := m^d \ mod \ N$

• <u>Vrfy</u>: On input a public key pk = (e, N), a message $m \in \mathbb{Z}_N^*$ and a signature $\sigma \in \mathbb{Z}_N^*$ output 1 if and only if

 $m := \sigma^e \mod N$

- To forge signature of a message m, the adversary, given N, e but not d, must compute m^d mod N, meaning invert the RSA function at m.
- As RSA is one-way so this task should be hard and the scheme should be secure. Correct?
- Of course not...
- No-message attacks
 - 1) Output forgery (m*, σ *) := (1, 1). Valid since 1^d = 1 mod N
 - 2) Choose $\sigma \in \mathbb{Z}_{N}^{*}$ and compute m := $\sigma^{e} \mod N$
- EUF-CMA attack
 - Ask signatures σ₁, σ₂ for m₁,m₂ ∈ Z_N* and output (m*, σ*) := (m₁ · m₂ mod N, σ₁ · σ₂ mod N)

Even if it would be secure, a message space of Z_N^* is not desirable!

<u>Block-wise signing</u>

- Consider m := (m₁,..., m_n) with $m_i \in M$ and compute $\sigma := (\sigma_1,..., \sigma_n)$
- Need to take care to avoid mix-and-match attacks (block reordering, exchanging blocks from different signatures, etc.)
- Inefficient for large messages (one invocation of the scheme per block)

• <u>Hash-and-sign</u>

- Compress arbitrarily long message before signing by hashing them to a fixed length string using a hash function H
- The range of H needs to be compatible with the message space of the signature scheme

Hash-and-Sign Paradigm (Construction 12.3)

- Let Σ = (Gen, Sign, Vrfy) be a signature scheme for messages of length k(n), and let Γ = (Gen_H, H) be a hash function with output length k(n). Construct signature scheme Σ' = (Gen', Sign', Vrfy') as follows:
 - <u>Gen':</u> on input 1ⁿ, run Gen(1ⁿ) to obtain (pk, sk) and run Gen_H(1ⁿ) to obtain s; the public key is (pk, s) and the private key is (sk, s).
 - <u>Sign'</u>: on input a private key (sk, s) and a message m ∈ {0, 1}*, output σ ← Sign_{sk}(H(s, m)).
 - <u>Vrfy'</u>: on input a public key (pk, s), a message m ∈ {0, 1}*, and a signature σ, output 1 if and only if Vrfy_{pk}(H(s, m), σ) = 1.

<u>THEOREM 12.4</u>: If Σ is a secure signature scheme for messages of length k and Γ is collision resistant, then Σ' is a secure signature scheme (for arbitrary-length messages).

• <u>Proof Idea</u>

- Let m_1, \dots, m_q be the messages queried by **A** and (m^*, σ^*) the valid forgery
 - Case 1: $H(s, m^*) = H(s, m_i)$ for some $i \in [q]$: we have a collision for H
 - Case 2: H(s, m*) ≠ H(s, m_i) for all i ∈ [q] : we have that (H(s, m*), σ*) is a forgery for Σ
- <u>Hash-and-sign in practice</u>
 - Used by signature schemes used in practice (RSA PKCS#1 v1.5 signatures, Schnorr, (EC)DSA, ...)
 - Recall that we consider H to be keyed for theoretical reasons and in practice H would be any "good" collision-resistant hash function, e.g., SHA-3

- Can we simply apply the hash-and-sign paradigm to RSA?
 - No, not assuming collision resistant hashing (or any other reasonable standard property of a hash function), as the underlying textbook RSA signature scheme does not provide any meaningful security
- But, we can apply the idea of hash-and-sign and model the hash function as a random oracle!
 - RSA Full Domain Hash (RSA-FDH)
 - The random oracle is collision resistant and destroys other "dangerous" algebraic properties
 - Important that range of H is (close to) Z_N^*
 - H constructed via repeated application of an underlying cryptographic hash function such as SHA-3
- Never say "signing = d/encrypt the hash" when talking about signing (with RSA)!
 - "Misunderstanding" due to commutativity of RSA private and public key operation
 - Other signature schemes do usually not allow any such analogy

RSA FDH Signatures (Construction 12.6)

- <u>KeyGen</u>: On input 1ⁿ pick two random n-bit primes p,q, set N = pq, pick e s.t. gcd(e, φ(N)) = 1, compute d := e⁻¹ mod φ(N) output (sk, pk) := ((d, N), (e, N)). As part of the key generation a hash function H: {0, 1}* → Z_N* is specified (but we leave this implicit).
- Sign: On input $m \in \{0, 1\}^*$ and sk = (d, N), compute and output

 $\sigma := H(m)^d \mod N$

• <u>Vrfy</u>: On input a public key pk = (e, N), a message $m \in \{0, 1\}^*$ and a signature $\sigma \in \mathbb{Z}_N^*$ output 1 if and only if

 $H(m) := \sigma^e \mod N$

<u>THEOREM 12.7:</u> If the RSA problem is hard relative to GenRSA and H is modeled as a random oracle, then RSA-FDH is EUF-CMA secure.

RSA FDH Signatures (Proof Sketch – Naive Strategy)

- We again use the power of random oracles and reduce the EUF-CMA security to the RSA assumption
- We have to simulate signing queries <u>without knowing the private key</u>
 - Use the idea of the previously seen no-message attack against texbook RSA (i.e, choose a signature and compute the message)
 - We randomly choose an index i $\in [q_H]$ (the number of queries to H)
 - In the i'th query we will embed the RSA instance (N, e, y)
 - If adversary queries H for m_j
 - j≠ i: choose σ_j ←^{\$} Z_N^{*} and set H(m_j) := σ_j^e mod N, record (m_j, σ_j, H(m_j)) and return σ_j
 - j=i: return y
 - If adversary queries a signature for m_j
 - j=i: abort (our guess was wrong)
 - $j \neq i$: retrieve (m_j, σ_j , H(m_j)) and return σ_j
- Adversary outputs (m*, σ *), and if m* = m_i and σ *e = y mod N , then output σ

- We look at two popoluar schemes: Schnorr and DSA/ECDSA
- Both schemes can be viewed as signatures obtained from <u>3-move</u> <u>identification schemes</u>
- Schnorr signatures
 - Applying the Fiat-Shamir heuristic: r computed as H(I, m) with H modeled as RO
 - Can be viewed as a non-interactive zero-knowledge proof of knowledge of a discrete logarithm (the private key)
- DSA/ECDSA

– Uses a different transform then Fiat-Shamir (but similar idea)

Schnorr Signatures

- <u>KeyGen</u>: run G(1ⁿ) to obtain (G, q, g). Choose x ←^{\$} Z_q and set y := g^x. The private key is x and the public key is (G, q, g, y). As part of key generation, a function H : {0, 1}* → Z_q is specified.
- Sign: on input a private key x and a message m \in {0, 1}*, choose k $\leftarrow \mbox{$^{\circ}$} \mathbf{Z}_q$ and compute
 - I := g^k
 - r := H(I, m) and
 - s := rx + k mod q

Output the signature σ:= (r, s).

<u>Vrfy</u>: on input a public key (G, q, g, y), a message m ∈ {0, 1}*, and a signature σ = (r, s), compute I := g^s · y^{-r} and output 1 if H(I, m) = r.

<u>Correctness</u>: $g^{s} \cdot y^{-r} = g^{rx + k} \cdot g^{-xr} = g^{k} = 1$

<u>THEOREM:</u> If the discrete-logarithm problem is hard relative to ${\bf G}$ and H is a random oracle, then the Schnorr signature scheme is EUF-CMA secure.

DSA/ECDSA

- <u>KeyGen</u>: run G(1ⁿ) to obtain (G, q, g). Choose x ←^{\$} Z_q and set y := g^x. The private key is x and the public key is (G, q, g, y). As part of key generation, two functions H : {0, 1}* → Z_q and F : G → Z_q are specified.
- Sign: on input a private key x and a message $m \in \{0, 1\}^*$, choose $k \leftarrow {}^{\$} Z_q$ and compute
 - r := F(g^k)
 - s := k⁻¹(H(m)+rx) mod q (If r = 0 or k=0 or s = 0 then start again with a fresh choice of k)

Output the signature σ := (r, s).

<u>Vrfy</u>: on input a public key (G, q, g, y), a message m ∈ {0, 1}*, and a signature σ = (r, s) with r, s ≠ 0 mod q, compute u=s⁻¹ mod q output 1 if r = F(g^{H(m)u} y^{ru}).

- DSA works in a prime order q subgroup of Z_p^* and F(I) = I mod q.
- ECDSA works in elliptic curves. In case of a prime order q subgroup of E(Z_p) and I=(x, y), F(I) = x mod q
- If H and F modeled as random oracles, EUF-CMA secuirty can be proven under DL. But for these concrete forms above <u>no security proof is known</u>.

Schnorr, DSA/ECDSA Practical Aspects

- Bad randomness (Sony PS3 2010)
 - Recall in Schnorr: s := rx + k mod q with r:= H(g^k, m)
 - Signing two messages m, m' with m≠m' with same k yields

```
s = rx + k \mod q and s' = r'x + k \mod q
s - rx = s' - r'x \mod q
x = (s' - s)(r' - r)^{-1} \mod q
```

- Also practical attacks if the randomness is biased (https://eprint.iacr.org/2019/023)
- Countermeasure: make them deterministic (RFC 6979, EdDSA)
 - Compute k:= D(sk, m)
 - Solves problem above, but opens up possibility for <u>fault attacks</u>
 - Trigger signing same message twice, trigger a fault in one run in m when computing H(m). The old attack then applies.
 - Countermeasure? Verification before outputting a signature, etc.

One-Time Signatures (Lamport)

From any one-way functions (e.g., hash functions):

- Let H be a one-way function and assume 3-bit messages
- Private key is matrix of uniformly random values from the domain of H
- Public key is the matrix of images of sk elements under H

$$pk = \begin{pmatrix} y_{1,0} & y_{2,0} & y_{3,0} \\ y_{1,1} & y_{2,1} & y_{3,1} \end{pmatrix} \quad sk = \begin{pmatrix} x_{1,0} & x_{2,0} & x_{3,0} \\ x_{1,1} & x_{2,1} & x_{3,1} \end{pmatrix}$$

Signing $m = 011$:
$$sk = \begin{pmatrix} \boxed{x_{1,0}} & x_{2,0} & x_{3,0} \\ x_{1,1} & \boxed{x_{2,1}} & \boxed{x_{3,1}} \end{pmatrix} \Rightarrow \sigma = (x_{1,0}, x_{2,1}, x_{3,1})$$

Verifying for $m = 011$ and $\sigma = (x_1, x_2, x_3)$:
$$pk = \begin{pmatrix} \boxed{y_{1,0}} & y_{2,0} & y_{3,0} \\ y_{1,1} & \boxed{y_{2,1}} & \boxed{y_{3,1}} \end{pmatrix} \end{cases} \Rightarrow \begin{array}{l} H(x_1) \stackrel{?}{=} y_{1,0} \\ H(x_2) \stackrel{?}{=} y_{2,1} \\ H(x_3) \stackrel{?}{=} y_{3,1} \end{pmatrix}$$

Various techniques exist to obtain (stateful) many-times signatures

From a concrete hardness assumption (DL):

- KeyGen: run G(1ⁿ) to obtain (G, q, g). Choose x, y ←^{\$}Z_q and set h := g^x and c:=g^y. The private key is (x, y) and the public key is (G, q, g, h, c).
- <u>Sign</u>: on input a private key (x, y) and a message $m \in Z_q$, compute and output σ := (y-m)x⁻¹ mod q.
- <u>Vrfy</u>: on input a public key (G, q, g, h, c), a message m ∈ Z_q, and a signature σ output 1 if c=g^mh^σ.

<u>Correctness</u>: $g^{m}h^{\sigma} = g^{m+x\sigma} = g^{m+x((y-m)/x)} = g^{y} = c$.

<u>THEOREM</u>: If the discrete-logarithm problem is hard relative to **G**, then the signature scheme is EUF-1-naCMA secure.

Generic Compilers for Strong Security

- CMA from RMA
 - RMA scheme with message space k + q(k) and resulting CMA scheme with message space q(k)
 - For $m \in \{0, 1\}^*$ choose uniformaly random $m_L \leftarrow {}^{\$} \{0, 1\}^q$ and compute $m_R = m_L \oplus m_R$ (with both parts uniformly random)
 - Choose $r \leftarrow \$ \{0,1\}^k$ and sign $r||m_L$ and $r||m_R$ with two independent keys sk_L and sk_R of Σ_{RMA}
- CMA from naCMA
 - Let Σ be a naCMA-secure scheme, Σ' be a naCMA-secure one-time scheme. Generate a long-term key-pair for Σ
 - For message m generate one-time key of Σ' and sign m with one-time key.
 Sign one-time public key using long-term signing key