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Digital Signatures 
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Organizational

● Where to find the slides and homework?
– https://danielslamanig.info/ModernCrypto19

● How to contact me?
– daniel.slamanig@ait.ac.at

● Tutors: Guillermo Perez, Karen Klein
– guillermo.pascualperez@ist.ac.at; karen.klein@ist.ac.at 

● Official page at TU, Location etc.
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid

=417&courseNr=192062&semester=2019W

● Tutorial, TU site
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid

=246&courseNr=192063

● Exam for the second part: Thursday 30.01.2020 15:00-17:00 (Tutorial 
slot)

https://danielslamanig.info/ModernCrypto19
mailto:daniel.slamanig@ait.ac.at
mailto:guillermo.pascualperez@ist.ac.at
mailto:karen.klein@ist.ac.at
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid=417&courseNr=192062&semester=2019W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid=417&courseNr=192062&semester=2019W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid=246&courseNr=192063
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid=246&courseNr=192063
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Overview Digital Signatures

secret key skA

public key pkA

public key pkAInsecure channel

A: pkA

(m, σ)

σ := SigskA(m) b := VrfypkA(m, σ)

/
message m
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Digital Signatures: Intuitive Properties

Can be seen as the public-key analogue of MACs with public 
verifiability 

● Integrity protection: Any modification of a signed message can be 
detected

● Source authenticity: The sender of a signed message can be identified 
● Non-repudiation: The signer cannot deny having signed (sent) a 

message

Security (intuition): should be hard to come up with a signature for a 
message that has not been signed by the holder of the private key  
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Digital Signatures: Applications

Digital signatures have many applications and are at the heart of 
implementing public-key cryptography in practice 

● Issuing certificates by CAs (Public Key Infrastructures): binding of 
identities to public keys

● Building authenticated channels: authenticate parties (servers) in 
security protocols (e.g., TLS) or secure messaging (WhatsApp, Signal, ...) 

● Code signing: authenticate software/firmware (updates)
● Sign documents (e.g., contracts): Legal regulations define when digital 

signatures are equivalent to handwritten signatures
● Sign transactions: used in the cryptocurrency realm
● etc.     
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Digital Signatures: Definition

DEFINITION 12.1 A (digital) signature scheme is a triple of PPT algorithms 
(Gen, Sig, Vrfy) such that:

1. The key-generation algorithm Gen takes as input the security parameter
1n and outputs a pair of keys (pk, sk) (we assume that pk and sk have 
length n and that n can be inferred from pk or sk).  
2. The signing algorithm Sig takes as input a private key sk and a message
 m from some message space M. It outputs a signature σ, and we write 
this as σ ← Sigsk(m).

3. The deterministic verification algorithm Vrfy takes as input a public key
Pk, a message m, and a signature σ. It outputs a bit b with b=1 meaning 
valid and b=0 meaning invalid. We write this as b := Vrfypk(m, σ).

It is required that, except possibly with negligible probability over 
(pk, sk) ← Gen(1n), we have 

Vrfypk(m, Sigsk(m)) = 1 

for any message m  ∈ M.
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Some Remarks on the Definition

● The signing algorithm 
– may be deterministic or probabilistic

– may be stateful or stateless (latter is the norm) 

● The deterministic verification algorithm may be perfectly correct 
(never fails) or may fail with negligible probability

● Every instance has an associated message space M (which we assume 
to be implicitly defined when seeing the public key)
– If there is a function k such that the message space is {0, 1}k(n) (with n 

being the security parameter), then the signature scheme supports 
message length k(n)

– We will later see how we can generically construct signature schemes for 
arbitrary message spaces from any scheme that supports messages of 
length k(n)
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Formal Security Notions for Digital Signatures

● Attack model (increasing strength) 
– No-message attack (NMA): Adversary only sees public key 

– Random message attack (RMA): Adversary can obtain signatures for random 
messages (not in the control of the adversary) 

– Non-adaptive chosen message attack (naCMA): Adversary defines a list of 
messages for which it wants to obtain signatures (before it sees the public 
key)

– Chosen message attack (CMA): Adversary can adaptively ask for signatures on 
messages of its choice 
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Formal Security Notions for Digital Signatures

● Goal of an adversary (decreasing hardness)
– Universal forgery (UF): Adversary is given a target message for which it needs 

to output a valid signature

– Existential forgery (EF): Adversary outputs a signature for a message of the 
adversary’s choice

● Security notion: attack model + goal of the adversary

● For schemes used in practice: Adversary can not even achieve the weakest 
goal in the strongest attack model
– EUF-CMA: existential unforgeability under chosen message attacks
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EUF-CMA Security

A signature scheme scheme Σ = (Gen, Sig, Vrfy) is existentially unforgeabily 
under chosen message attacks (EUF-CMA) secure, if for all PPT adversaries 
A there is a negligible function negl s.t.

Pr[Sig-forgeA,Σ(n)=1]  ≤ negl(n) .  
euf-cma
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Some Remarks on the Definition

● One-time vs. many-time signatures
– The number of queries to the oracle may be limited, i.e., only a single 

query is allowed vs. arbitrary many are allowed

● Weak vs. strong unforgeability
– In case of strong unforgeability the adversary wins if it outputs a valid 

signature even for a queried message, but the signature differs from the 
one obtained from the oracle

● Oracle records (mi,σi) and winning condition is: (m*,σ*) ∉ Q 

● Not achievable for re-randomizable signature schemes

– We consider only standard (weak) unforgeability
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RSA Signatures

● KeyGen: On input 1n pick two random n-bit primes p,q, set N = pq, pick 
e s.t. gcd(e, φ(N)) = 1, compute d := e−1 mod φ(N) output (sk, pk) := ((d , 
N ), (e ,N))

● Sign: On input m ∈  ZN* and sk = (d, N), compute and output
 

σ := md mod N 

● Vrfy: On input a public key pk = (e, N), a message m ∈  ZN*  and a 
signature σ ∈  ZN* output 1 if and only if 

m := σe mod N
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RSA Signatures

● To forge signature of a message m, the adversary, given N, e but not d, 
must compute md mod N, meaning invert the RSA function at m.

● As RSA is one-way so this task should be hard and the scheme should 
be secure. Correct? 

● Of course not…
● No-message attacks

1) Output forgery (m*, σ*) := (1, 1). Valid since 1d = 1 mod N

2) Choose σ  ∈  ZN* and compute m := σe mod N

● EUF-CMA attack

– Ask signatures σ1, σ2  for m1,m2 ∈  ZN* and output (m*, σ*) := (m1 · m2 

mod N, σ1 · σ2 mod N)

Even if it would be secure, a message space of ZN* is not desirable!
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Extending the Message Space

● Block-wise signing 

– Consider m := (m1,…, mn) with mi ∈  M and compute σ := (σ1,…, σn)

– Need to take care to avoid mix-and-match attacks (block reordering, 
exchanging blocks from different signatures, etc.)

– Inefficient for large messages (one invocation of the scheme per block)

● Hash-and-sign
– Compress arbitrarily long message before signing by hashing them to a 

fixed length string using a hash function H 

– The range of H needs to be compatible with the message space of the 
signature scheme
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Hash-and-Sign Paradigm (Construction 12.3)

● Let Σ = (Gen, Sign, Vrfy) be a signature scheme for messages of length 
k(n), and let Γ = (GenH, H) be a hash function with output length k(n). 
Construct signature scheme Σ’ = (Gen’ , Sign’ , Vrfy’) as follows:

– Gen’: on input 1n , run Gen(1n) to obtain (pk, sk) and run GenH(1n) to 
obtain s; the public key is (pk, s) and the private key is (sk, s).

– Sign’: on input a private key (sk, s) and a message m ∈  {0, 1}* , 
output σ ← Signsk(H(s, m)).

– Vrfy’: on input a public key (pk, s), a message m ∈  {0, 1}*, and a 
signature σ, output 1 if and only if Vrfypk(H(s, m), σ) = 1.

THEOREM 12.4: If Σ is a secure signature scheme for messages of length
k and Γ is collision resistant, then Σ’ is a secure signature scheme 
(for arbitrary-length messages). 
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Hash-and-Sign Paradigm

● Proof Idea

– Let m1 ,... , mq be the messages queried by A and (m*, σ*) the valid forgery

● Case 1: H(s, m*) = H(s, mi) for some i ∈  [q] : we have a collision for H

● Case 2: H(s, m*) ≠ H(s, mi) for all i ∈  [q] : we have that (H(s, m*), σ*) is a 
forgery for Σ

● Hash-and-sign in practice
– Used by signature schemes used in practice (RSA PKCS#1 v1.5 signatures, 

Schnorr, (EC)DSA, …) 

– Recall that we consider H to be keyed for theoretical reasons and in 
practice H would be any “good” collision-resistant hash function, e.g., SHA-3
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RSA FDH Signatures

● Can we simply apply the hash-and-sign paradigm to RSA? 
– No, not assuming collision resistant hashing (or any other reasonable standard 

property of a hash function), as the underlying textbook RSA signature scheme 
does not provide any meaningful security

● But, we can apply the idea of hash-and-sign and model the hash function as a 
random oracle!
– RSA Full Domain Hash (RSA-FDH) 

– The random oracle is collision resistant and destroys other “dangerous” algebraic 
properties

– Important that range of H is (close to) ZN* 

– H constructed via repeated application of an underlying cryptographic hash 
function such as SHA-3  

● Never say “signing = d/encrypt the hash” when talking about signing (with RSA)!
– “Misunderstanding” due to commutativity of RSA private and public key operation

– Other signature schemes do usually not allow any such analogy
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RSA FDH Signatures (Construction 12.6)

● KeyGen: On input 1n pick two random n-bit primes p,q, set N = pq, pick e 
s.t. gcd(e, φ(N)) = 1, compute d := e−1 mod φ(N) output (sk, pk) := ((d , N ), 
(e ,N)). As part of the key generation a hash function H: {0, 1}* → ZN* is 
specified (but we leave this implicit).

● Sign: On input m ∈  {0, 1}* and sk = (d, N) , compute and output
 

σ := H(m)d mod N 

● Vrfy: On input a public key pk = (e, N), a message m ∈  {0, 1}*  and a 
signature σ ∈  ZN* output 1 if and only if 

H(m) := σe mod N

THEOREM 12.7: If the RSA problem is hard relative to GenRSA and H
is modeled as a random oracle, then RSA-FDH is EUF-CMA secure.  
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RSA FDH Signatures (Proof Sketch – Naive Strategy)

● We again use the power of random oracles and reduce the EUF-CMA security to 
the RSA assumption

● We have to simulate signing queries without knowing the private key
– Use the idea of the previously seen no-message attack against texbook RSA (i.e, 

choose a signature and compute the message)  

– We randomly choose an index i ∈  [qH] (the number of queries to H)

● In the i’th query we will embed the RSA instance (N, e, y)

– If adversary queries H for mj

● j≠ i: choose σj ←$ ZN* and set H(mj) := σj
e mod N, record (mj, σj , H(mj)) and 

return σj

● j=i: return y

– If adversary queries a signature for mj

● j=i: abort (our guess was wrong)
● j≠ i: retrieve (mj, σj , H(mj)) and return σj

● Adversary outputs (m*, σ*), and if m* = mi and σ*e = y mod N , then output σ
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Signatures in the Discrete Logarithm Setting

● We look at two popoluar schemes: Schnorr and DSA/ECDSA
● Both schemes can be viewed as signatures obtained from 3-move 

identification schemes
● Schnorr signatures

– Applying the Fiat-Shamir 
heuristic: r computed as 
H(I, m) with H modeled as RO

– Can be viewed as a non-inter-
active zero-knowledge proof 
of knowledge of a discrete 
logarithm (the private key)

● DSA/ECDSA
– Uses a different transform then Fiat-Shamir (but similar idea)
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Schnorr Signatures

● KeyGen: run G(1n) to obtain (G, q, g). Choose x ←$ Zq and set y := gx . The 
private key is x and the public key is (G, q, g, y). As part of key generation, a 
function H : {0, 1}* → Zq is specified.

● Sign: on input a private key x and a message m ∈  {0, 1}*, choose k ←$ Zq 
and compute 

– I := gk 

– r := H(I, m) and 

– s := rx + k mod q

Output the signature σ:= (r, s).

● Vrfy: on input a public key (G, q, g, y), a message m ∈  {0, 1}*, and a signature 
σ = (r, s), compute I := gs · y−r and output 1 if H(I, m) = r.

Correctness: gs · y−r = grx + k· g-xr = gk = I

THEOREM: If the discrete-logarithm problem is hard relative to G and H is 
a random oracle, then the Schnorr signature scheme is EUF-CMA secure.  
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DSA/ECDSA 

● KeyGen: run G(1n) to obtain (G, q, g). Choose x ←$ Zq and set y := gx . The private key is 
x and the public key is (G, q, g, y). As part of key generation, two functions H : {0, 1}* → 
Zq and F : G → Zq are specified.

● Sign: on input a private key x and a message m ∈  {0, 1}*, choose k ←$ Zq and compute 

– r := F(gk)

– s := k-1(H(m)+rx) mod q (If r = 0 or k=0 or s = 0 then start again with a fresh choice 
of k)

Output the signature σ:= (r, s).

● Vrfy: on input a public key (G, q, g, y), a message m ∈  {0, 1}*, and a signature σ = (r, s) 
with r, s ≠ 0 mod q, compute u=s-1 mod q output 1 if r = F(gH(m)u yru).

● DSA works in a prime order q subgroup of Zp*  and F(I) = I mod q.

● ECDSA works in elliptic curves. In case of a prime order q subgroup of E(Zp) and I=(x, y), F(I) = x 
mod q

● If H and F modeled as random oracles, EUF-CMA secuirty can be proven under DL. But for 
these concrete forms above no security proof is known. 
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Schnorr, DSA/ECDSA Practical Aspects

● Bad randomness (Sony PS3 2010)
– Recall in Schnorr: s := rx + k mod q with r:= H(gk, m)

– Signing two messages m, m’ with m≠m’ with same k yields 

 s = rx + k mod q   and   s’ = r’x + k mod q

              s – rx = s’ - r’x mod q 

                               x = (s’ - s)(r’ - r)-1 mod q   

● Also practical attacks if the randomness is biased (https://eprint.iacr.org/2019/023) 
● Countermeasure: make them deterministic (RFC 6979, EdDSA)

– Compute k:= D(sk, m)

– Solves problem above, but opens up possibility for fault attacks
● Trigger signing same message twice, trigger a fault in one run in m when computing 

H(m). The old attack then applies. 
● Countermeasure? Verification before outputting a signature, etc.   

https://eprint.iacr.org/2019/023
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One-Time Signatures (Lamport)

● Let H be a one-way function and assume 3-bit messages
● Private key is matrix of uniformly random values from the domain of H 
● Public key is the matrix of images of sk elements under H

From any one-way functions (e.g., hash functions): 

Various techniques exist to obtain (stateful) many-times signatures
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One-Time Signatures 

● KeyGen: run G(1n) to obtain (G, q, g). Choose x, y ←$ Zq and set h := gx 

and c:=gy. The private key is (x, y) and the public key is (G, q, g, h, c). 

● Sign: on input a private key (x, y) and a message m ∈  Zq, compute and 
output σ:= (y-m)x-1 mod q.

● Vrfy: on input a public key (G, q, g, h, c), a message m ∈  Zq, and a 
signature σ output 1 if c=gmhσ.

THEOREM: If the discrete-logarithm problem is hard relative to G, then 
the signature scheme is EUF-1-naCMA secure.  

Correctness: gmhσ = gm+xσ = gm+x((y−m)/x) = gy = c.

From a concrete hardness assumption (DL):
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Generic Compilers for Strong Security

● CMA from RMA
– RMA scheme with message space k + q(k) and resulting CMA scheme with 

message space q(k)

– For m ∈  {0, 1}* choose uniformaly random mL ←$ {0, 1}q and compute mR = 
mL  m. Thus we have m = m⊕ m. Thus we have m = m L  ⊕ m. Thus we have m = m mR (with both parts uniformly random)

– Choose r ←$ {0, 1}k and sign r||mL and r||mR with two independent keys 
skL and skR of ΣRMA

● CMA from naCMA
– Let Σ be a naCMA-secure scheme, Σ’ be a naCMA-secure one-time 

scheme. Generate a long-term key-pair for Σ

– For message m generate one-time key of Σ’ and sign m with one-time key. 
Sign one-time public key using long-term signing key
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