
Daniel Slamanig

Modern Cryptography: Lecture 10
The Public Key Revolution II/II

2/31

Organizational

● Where to find the slides and homework?
– https://danielslamanig.info/ModernCrypto19

● How to contact me?
– daniel.slamanig@ait.ac.at

● Tutors: Guillermo Perez, Karen Klein
– guillermo.pascualperez@ist.ac.at; karen.klein@ist.ac.at

● Official page at TU, Location etc.
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid

=417&courseNr=192062&semester=2019W

● Tutorial, TU site
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid

=246&courseNr=192063

● Exam for the second part: Thursday 30.01.2020 15:00-17:00 (Tutorial
slot)

https://danielslamanig.info/ModernCrypto19
mailto:daniel.slamanig@ait.ac.at
mailto:guillermo.pascualperez@ist.ac.at
mailto:karen.klein@ist.ac.at
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid=417&courseNr=192062&semester=2019W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid=417&courseNr=192062&semester=2019W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid=246&courseNr=192063
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid=246&courseNr=192063

3/31

Discrete Logarithms

● We consider a cyclic group G of order q
with generator g, so G = {g0, …, gq-1}

● The DL problem: given h=gx to find the
 unique x ∈ Zq

● Let G be a group generator that on input
1n outputs a description of a cyclic group
(G, q, g) with ‖q‖=n (binary length) Z*

53 , g=2

The discrete-logarithm experiment DLogA,G (n):

1. Run G(1n) to obtain (G, q, g), where G is a cyclic group of
order q (with ‖q‖ = n), and g is a generator of G.
2. Choose a uniform h ∈ G.
3. A is given G, q, g, h, and outputs x ∈ Zq.

4. The output of the experiment is defined to be 1 if gx = h,
and 0 otherwise.

4/31

Discrete Logarithms

● We consider a cyclic group G of order q
with generator g, so G = {g0, …, gq-1}

● The DL problem: given h=gx to find the
 unique x ∈ Zq

● Let G be a group generator that on input
1n outputs a description of a cyclic group
(G, q, g) with ‖q‖=n (binary length) Z*

53 , g=2

The discrete-logarithm experiment DLogA,G (n):

1. Run G(1n) to obtain (G, q, g), where G is a cyclic group of
order q (with ‖q‖ = n), and g is a generator of G.
2. Choose a uniform h ∈ G.
3. A is given G, q, g, h, and outputs x ∈ Zq.

4. The output of the experiment is defined to be 1 if gx = h,
and 0 otherwise.

DEFINITION 8.62 We say that the discrete-logarithm problem is hard
relative to G if for all PPT algorithms A there exists a negligible function
negl such that

Pr[DLogA,G(n) = 1] ≤ negl(n).

5/31

Problems Related to the DLOG Problem

● We will now take a look at two problems related but weaker than the
DLP; the computational (CDH) and the decisional Diffie–Hellman
(DDH) problem

● Let DHg(h1, h2) := gloggh1 ·loggh2

– If h1 = gx1 and h2 = gx2, then DHg(h1, h2) = gx1x2 = h1
x2 = h2

x1

● CDH Problem

– Given (G, q, g, h1, h2) compute DHg(h1, h2)

DEFINITION: We say that the CDH problem is hard relative to G if for
all PPT algorithms A there is a negligible function negl such that

Pr[A(G, q, g, gx , gy) = gxy] ≤ negl(n),
where the probabilities are taken over the experiment in which G(1n)
outputs (G, q, g), and then uniform x, y Zq are chosen.

6/31

Problems Related to the DLOG Problem

● DDH Problem

– Given (G, q, g) and uniform random h1, h2 ∈ G, distinguish DHg(h1, h2)
from uniformly random h’ ∈ G

DEFINITION 8.63: We say that the DDH problem is hard relative to G if for
all PPT algorithms A there is a negligible function negl such that

Pr[A(G, q, g, gx , gy , gz) = 1] − Pr[A(G, q, g, gx , gy , gxy) = 1] ≤ negl(n),

where in each case the probabilities are taken over the experiment in
which G(1n) outputs (G, q, g), and then uniform x, y, z ∈ Zq are chosen.

Clearly, if we can solve DL, then we can solve DDH and CDH

DDH is a stronger assumption than CDH

There are groups where the CDH is assumed hard, but the DDH is easy

7/31

Algorithms for Computing Discrete Logarithms

● Two types of algorithms
– Generic ones: apply to arbitrary groups

– Specific ones: tailored to work for some specifc class of groups

Generic for groups of order q:
-Baby step/giant step (Shanks)*: O(√q · polylog(q)) time and O(√q) space
-Pollard’s rho*: O(√q · polylog(q)) time and constant space

Generic for groups of order q (if factorization is known/easy to
compute):
-Pohlig-Hellman: Reduces to finding DL in group of order q’ with q’ the
largest prime dividing q (use then any algorithm to solve the DL)

Specific algorithm for Z*
p:

-Index Calculus/Number Field Sieve: Subexponential with runtime
2O((log p)1/3 ·(log log p)2/3)

* time complexity optimal for generic algorithms

8/31

The Baby-Step/Giant-Step Algorithm I/II

● Want to solve DL problem for some h=gx in (G, q, g)
● We know that h must lie somwhere in the cycle {g0, …, gq-1}

– Computing all elements would take Ω(q) time!

● Take some elements of the cycle at steps t=⌊√q⌋ (the “giant steps”)
– Gives us a list (g0 , gt , g2t , ... , g⌊q/t⌋·t) with gaps of at most t elements

– We know h lies in one of the gaps

– Compute a list (h·g1, …, h·gt) of shifts of h (the “baby steps”)

– One of the points in the “baby list” will be equal to one in the
“giant list”, i.e., h·gi = gk·t for some i and k

– And determine x = (kt − i) mod q

9/31

The Baby-Step/Giant-Step Algorithm II/II

● Complexity

– O(√q) exponentiations/multiplications

– Sorting the “giant list” takes O(√q · log q)

– Binary search for each element from “baby list” in O(log q)

– Overall O(√q · polylog(q)) time but need to store O(√q) elements

● Can we do better generically?

10/31

The Pollard Rho Algorithm*

● Idea: Let Hg,h: Zq × Zq → G be defined by
Hg,h(x1 , x2) = gx1 · hx2

● The birthday bound says we find a collision
in Hg,h in time O(√q)

● Is possible with constant memory (see §5.4.2)

● If Hg,h(x1 , x2) = Hg,h(x1’ , x2’) with x1’≠x1 and x2’≠x2

then solve γ(x2-x2’) = (x1’-x1) mod q for γ

● Some issues not yet considerd
– Range of hash function must be subset of its domain: Use a standard

cryptographic hash function F: G → Zq × Zq to obtain the input for G

* we use the description from the book for consistency

11/31

Choice of Discrete Logarithm Hard Groups

● Generic vs. special algorithms
– If only generic algorithms are available parameters can be chosen

much smaller; Yields more efficient group operations

● Prime order vs. composite order groups
– Prime order: Discrete logarithm problem is hardest in prime order

groups and finding generators is trivial

– Composite order: Need to have subgroup of sufficient size (recall:
largest prime dividing the order; may need to consider specific
algorithms). Finding generators is more cumbersome.

● Prime order groups are preferable (there are some more reasons
why discussed later)

12/31

Choice of Discrete Logarithm Hard Groups

● Groups that are of interest

– Z*
p (does not have prime order)

– Prime order q subgroups of Z*
p

– Elliptic curve groups

Key sizes recommended by NIST (from §9.3)

What about Zp with addition?

13/31

Prime Order Subgroups of Z*
p

● We can “craft” p in a way that it has a prime order q subgroup of
desired size

● Choosing uniform element in G?

– Choose random h from Z*
p and compute hr mod p

● Determine if given h is in G (any h≠1 that is in G is a generator)

– Check if hq = 1 mod p

THEOREM 8.64 Let p = rq + 1 with p, q prime. Then
G = {hr mod p | h ∈ Z*

p}

is a subgroup of Z*
p of order q.

p and q need to be chosen such that the running time of the NFS (depends on
the length of p), and the running time of generic algorithms (depends on the
length of q) will be approximately equal.

p is called safe prime if r=2

14/31

Elliptic Curves

● Groups discussed so far directly rely on modular arithmetic
● Why not use different groups? Elliptic curve groups?

– Only generic algorithms for the DLP known!

Rationale: “ it is extremely unlikely that an index calculus attack on the elliptic curve method
will ever be able to work” [Miller, 85]

Victor S. Miller: Use of Elliptic
Curves in Cryptography.
Advances in Cryptology –
CRYPTO ’85

Neal Koblitz: Elliptic Curve
Cryptosystems. Mathematics
of Computation, AMS, 1987.

15/31

What are Elliptic Curves?

● An elliptic curve E over a field (we only condsider Zp with p ≥ 5, and
in particular large p) is a cubic equation

y2 = x3 + ax + b (short Weierstrass equation)

with a, b ∈ Zp and -16(4a3 + 27b2) ≠ 0 mod p (the curve is “smooth”)

● Let E(Zp) = {(x, y) | x, y ∈ Zp and y2 = x3 + ax + b mod p} {∪ { O}

– The elements in E(Zp) are called the points on the elliptic curve E

– O is called the point at infinity (it will act as the identiy)

16/31

Elliptic Curves over the Reals

A useful way to think about E(Zp) is to look at the graph over the reals

We can think of the point at infinity of sitting on top of the y-axis and lying on every vertical line

Every line intersecting the curve intersects in exactly three points
● Point P is counted twice if line is tangent to the curve
● Point at infinity is counted when the line is vertical

17/31

Elliptic Curves: Group Law (“chord-and-tangent rule”)

● E(Zp) forms a group with additive identity O

– O + P = P + O = P for all P ∈ E(Zp)

– If P = (x, y) ∈ E(Zp), then (x, y) + (x, -y) = O and -O = O

18/31

Elliptic Curves

● For cryptographic applications and in particular for the DLP to be hard
we need (sub-) groups of large prime order.

● How large are these elliptic curve groups?

– Let us define a quadratic residue (QR): An element y ∈ Z*
p is a quadratic

residue modulo p if there is an x ∈ Z*
p such that x2 = y mod p.

– For p > 2 prime, half the elements in Z*
p are QRs, and every QR has exactly

two square roots.

– If we look at the equation y2 = x3 + ax + b, each RHS value that is a QR
yields two points on the curve and if RHS is 0 it yields one

– So we heuristically expect to find expect to find 2 · (p − 1)/2 + 1 = p points +
the point of infinitey, i.e., p+1 points.

THEOREM 8.70 (Hasse bound): Let p be prime, and let E be an elliptic
curve over Zp . Then p + 1 − 2 √p ≤ |E(Zp)| ≤ p + 1 + 2 √p.

19/31

Elliptic Curves

● How to find curves?
– We could just randomly generate them: But for random curves the group

order will be “close” to uniformly distributed in the Hasse interval

– We also need to exclude weak curves, i.e., elliptic-curve groups over Z*
p

whose order is equal to p (anomalous curves) or p+1 (supersingular
curves), etc.

– There are efficient algorithms for counting points on curves, efficiently
generating curves

● Typically we use pre-computed standardized curves
– Standards for Efficient Cryptogrpahy (SEC)

– National Institute of Standards and Technology (NIST)

– ECC Brainpool (RFC 5639)

– Curve25519, Curve448

– Or BN or BLS if they need to be pairing-friendly

20/31

Elliptic Curves

● Now if we have a suitable elliptic curve group E(Zp) (or a subgroup)
of large prime order q generated by P, we can define the set {1P, …,
qP}

● We can define the elliptic curve DLP (ECDLP) as given Q=xP to
compute x ∈ Zq

– Analogously we can define CDH and DDH
● We can use our efficient square-and-multiply algorithm and apply it

to this setting (double-and-add) to compute the scalar multiplication
efficiently

21/31

Elliptic Curves

● Although curves standardized decades ago are still widely used, there
happened a lot in the last decades

● Starting with Kocher’99, side-channel attacks and their counter-
measures have become extremely sophisticated

● Decades of new research yielding faster, simpler and safer ways to do
ECC

● Suspicion surrounding previous standards: Snowden leaks, dual EC-
DRBG backdoor, etc., lead to conjectured weaknesses in the NIST curves

● Other specific classes of curves enable secure cryptographic pairings
– and thus interesting applications such as practical identity- and attribute-

based cryptography (see Guest Lecture)

 Back to Key Exchange Protocols

23/31

Example: KE in Z*
p (128 bit security – p: 3072 bit)

 p =
58096059953699580628595025333045743706869751763628952366614861522872037309971102257373360445331184072513261577549805174439905295945400471216628856721
8703240103211163970644049884404985098905162720024476580704181239472968054002410482797658436938152229236120877904476989274322575173807697956881130957
91255113330932435195537848163063815801618602002474925684481502425153044495771876041364287385809901725515739341462558303664059150008696437320532185668
32545291107903722831634138599586406690325959725187447169059540805012310209639011750748760017095360734234945757416272994856013308616958529958304677637
01918159408852834506128586389827176345729488354663887955431161544644633019925438234001629205709075117553388816191898729559153153669870129226768546551
743791579082315484463478026010289171803249539607504189948551381112697730747896907485704371071615012131592202455675924123901315291971095646840637944291
4941614357107914462567329693649

a =
7147687166405957187905360554739658269
24051861459165223549126157152970971006
7917003790492433011601949788108908769
6131592831386326210951294944584400497
4889298038584931918128447572321023987
1604390620061776483188754575562337708
53912505292364631833219121732146413465
5845254917228378772756695589845219962
202945089226966507426526912780244641
640090259271040043389582611419862375
8789881936121879455918028640626798648
3957813927304368495559776413009721221
8249158109645793763545566554629883777
8595680891578821511273574220422646379
1705999176775673042069842239249481690
67778961749230720712976034558026210721
092205466273969774855354375899087960
8882627763290293452560094576029847391
3613887675543866224792652999780598864
72414530462194527618119899746477252908
8780604931795419514638292288904557780
4592943730526541048518026400207941519
3983851143425084273119820368274789460
5871003049774770692442789896899105721
2096357725203480402449913844583448

b =
655456209464694933606826858160317049
69423104727624468251177438749706128879
9577019369882685976279047911306230897
5863428283798589097017957365590672835
713863895712246676094993008985548024
464030395443007480025079620363866193
152298860635410053224484639158979864
1210273772558373965486539312854838650
709031919742048649235894391903529930
3267696100508840431979272991603892747
7470940948581926791161465028635214849
8708623286193422239171712154568612530
067276018808591500424849476686706784
0510687153977068526645326383324039837
4733837969702262426137716316320449382
829920603980870340357510046733708501
7748387148822224875309641791879395483
7317546200348849305403999505191916794
71224055585570932193507471557775695981
637008509203947052819363924110844360
0686183528465724969562186437214972625
833222544865996160464558546299370165
8947042526444562415789958697265293564
785696709268960442796501209877036845
0012467927615639176399597363830386653
62727158

g = 123456789

197496648183227193286262018614250555971909799762533760654008147994875775445667054218578105133138217497206890599554928429450667899476
854668595594034093493637562451078938296960313488696178848142491351687253054602202966247046105770771577248321682117174246128321195678
537631520278649403464797353691996736993577092687178385602298873558954121056430522899619761453727082217823475746223803790014235051396
799049446508224661850168149957401474638456716624401906701394472447015052569417746372185093302535739383791980070572381421729029651639
304234361268764971707763484300668923972868709121665568669830978657804740157916611563508569886847487772676671207386096152947607114559
706340209059103703018182635521898738094546294558035569752596676346614699327742088471255741184755866117812209895514952436160199336532
6052422101474898256696660124195726100495725510022002932814218768060112310763455404567248761396399633344901857872119208518550803791724

411604662069593306683228525653441872410777999220572079993574397237156368762038378332742471939666544968793817819321495269833613169937
986164811320795616949957400518206385310292475529284550626247132930124027703140131220968771142788394846592816111078275196955258045178
705254016469773509936925361994895894163065551105161929613139219782198757542984826465893457768888915561514505048091856159412977576049
073563225572809880970058396501719665853110101308432647427786565525121328772587167842037624190143909787938665842005691911997396726455
110758448552553744288464337906540312125397571803103278271979007681841394534114315726120595749993896347981789310754194864577435905673
172970033596584445206671223874399576560291954856168126236657381519414592942037018351232440467191228145585909045861278091800166330876
4073238447199488070126873048860279221761629281961046255219584327714817248626243962413613075956770018017385724999495117779149416882188

ga mod p =

gb mod p =

330166919524192149323761733598426244691224199958894654036331526394350099088627302979833339501183059198113987880066739
419999231378970715307039317876258453876701124543849520979430233302777503265010724513551209279573183234934359636696506
968325769489511028943698821518689496597758218540767517885836464160289471651364552490713961456608536013301649753975875
610659655755567474438180357958360226708742348175045563437075840969230826767034061119437657466993989389348289599600338
950372251336932673571743428823026014699232071116171392219599691096846714133643382745709376112500514300983651201961186
613464267685926563624589817259637248558104903657371981684417053993082671827345252841433337325420088380059232089174946
086536664984836041334031650438692639106287627157575758383128971053401037407031731509582807639509448704617983930135028
7596589383292751993079161318839043121329118930009948197899907586986108953591420279426874779423560221038468

gab mod p =

24/31

Example: KE using Elliptic Curves (128 bit security – p: 256 bit)

 a=
89130644591246
03357763977064
14628550231450
28492835255603
183721922317324
614395

 b=
10095557463932
78641880693831
61907080327719
10919058405391
67978108219340
5190826

p = 2256 − 2224 + 2192 + 296 − 1

NIST Curve P-
256

p = 115792089210356248762697446949407573530086143415290314195533631308867097853951

E(Fp) : y2 = x3 − 3x + b
#E = 115792089210356248762697446949407573529996955224135760342422259061068512044369
P =
(48439561293906451759052585252797914202762949526041747995844080717082404635286,
36134250956749795798585127919587881956611106672985015071877198253568414405109)

(8411620826131589816759306786820052561234422188633
3785331584793435449501658416,
102885655542185598026739250172885300109680266058
548048621945393128043427650740)

aP =

bP =
(101228882920057626679704131545407930245895491542
090988999577542687271695288383,
7788741819030402299411659503455625776080718561567
9689372138134363978498341594)

(10122888292005762667970413154540793024589549154209098899957754268727169528838
3,
77887418190304022994116595034556257760807185615679689372138134363978498341594)

abP =

25/31

Diffie–Hellman(–Merkle) KE Protocol

● Now we are going to abstract away again the concrete setting and
consider a group G of prime order q and generator g

Ok, how to prove security of this protocol?
– Under DL? Other means of computing shared key?
– Under CDH? Only the complete shared key protected?
– Under DDH?

? ? ?

* definitional framework and idea of formulating assumptions not known back in the 70ies

26/31

Security Definition

A key-exchange protocol Π is secure in the presence of an eavesdropper
if for every PPT adversary

(G, q, g) ←$ G(1n)

(G, q, g)(G, q, g)

 G

27/31

Analysis of the DH(M) KE Protocol

Proof: Let A be a PPT adversary.
● Since Pr[b = 0] = Pr[b = 1] = ½, we have

THEOREM 10.3: If the DDH problem is hard relative to G, then the Diffie–
Hellman key-exchange protocol Π is secure in the presence of an eaves-
dropper (with respect to experiment).

≤ negl(n)

28/31

Analysis of the DH(M) KE Protocol

● Summary
– Can prove eavesdropping security under DDH (not surprising; the

assumption was basically modeled to abstract the analysis of these
protocols)

● What did we miss so far?
– Active adversaries: Man-in-the-middle

shared key shared key

29/31

Countering man-in-the-middle attacks (Authenticated KE - AKE)

 Authenticate with signature using

Establishing key using Diffie-
Hellman key exchange

Encrypt Decrypt

Certified signature verification key Signing key

Will talk about signatures soon!

30/31

Perfect Forward Secrecy

Another important property: Perfect forward secrecy

time

k1

k2

k3

k4

31/31

Alternatives to DL based KE Protocols: Outlook

● Shor: computing discrete logarithms (and factoring)
in polynomial time on a quantum computer
– If we have a sufficiently powerful quantum computer,

then DL and ECDL (as well as factoring) based systems
will be dead

● What to do if this should happen?
– Post-quantum cryptography: (asymmetric) cryptography that is conjectured

to resists attacks using classical and quantum computers

● Very active field of research
– Lattices

– Codes

– Isogenies (e.g., on supersingular elliptic curves – weak for EC crypto but
good for PQ)

– Etc.
https://csrc.nist.gov/projects/post-quantum-cryptography

Peter Shor

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

