Modern Cryptography: Lecture 10

The Public Key Revolution II/II

Daniel Slamanig

Organizational

- Where to find the slides and homework?
- https://danielslamanis.info/ModernCrypto19
- How to contact me?
- daniel.slamanig@ait.ac.at
- Tutors: Guillermo Perez, Karen Klein
- guillermo.pascualperez@ist.ac.at; karen.klein@ist.ac.at
- Official page at TU, Location etc.
- https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463\&dsrid =417\&courseNr=192062\&semester=2019W
- Tutorial, TU site
- https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593\&dsrid =246\&courseNr=192063
- Exam for the second part: Thursday 30.01.2020 15:00-17:00 (Tutorial slot)

Discrete Logarithms

- We consider a cyclic group G of order q with generator g , so $\mathrm{G}=\left\{\mathrm{g}^{0}, \ldots, \mathrm{~g}^{q-1}\right\}$
- The DL problem: given $\mathrm{h}=\mathrm{gx}$ to find the unique $x \in Z_{q}$
- Let G be a group generator that on input $1^{\text {n }}$ outputs a description of a cyclic group ($\mathrm{G}, \mathrm{q}, \mathrm{g}$) with $\|\mathrm{q}\|=\mathrm{n}$ (binary length)

The discrete-logarithm experiment $\operatorname{DLog}_{\mathrm{A}_{\mathrm{I}} \mathrm{G}}(\mathrm{n})$:

1. Run $\mathrm{G}\left(1^{\text {n }}\right)$ to obtain $(\mathrm{G}, \mathrm{q}, \mathrm{g})$, where G is a cyclic group of order q (with $\|q\|=n$), and g is a generator of G.
2. Choose a uniform $h \in G$.
3. A is given G, q, g, h, and outputs $x \in Z_{q}$.
4. The output of the experiment is defined to be 1 if $\mathrm{g}^{\mathrm{x}}=\mathrm{h}$, and 0 otherwise.

Discrete Logarithms

- We consider a cyclic group G of order q with generator g , so $\mathrm{G}=\left\{\mathrm{g}^{0}, \ldots, \mathrm{~g}^{q-1}\right\}$
- The DL problem: given $\mathrm{h}=\mathrm{gx}$ to find the unique $x \in Z_{q}$
- Let G be a group generator that on input 1n outputs a description of a cyclic group ($\mathrm{G}, \mathrm{q}, \mathrm{g}$) with $\|\mathrm{q}\|=\mathrm{n}$ (binary length)

The discrete-logarithm experiment $\operatorname{DLog}_{\mathrm{A}_{\mathrm{A}} \mathrm{G}}(\mathrm{n})$:

1. Run $\mathrm{G}\left(1^{\text {n }}\right)$ to obtain $(\mathrm{G}, \mathrm{q}, \mathrm{g})$, where G is a cyclic group of order q (with $\|q\|=n$), and g is a generator of G.
2 Chancon acm
DEFINITION 8.62 We say that the discrete-logarithm problem is hard relative to G if for all PPT algorithms A there exists a negligible function negl such that

$$
\operatorname{Pr}\left[\operatorname{LLog}_{\mathrm{A}, \mathrm{G}}(\mathrm{n})=1\right] \leq \operatorname{negl}(n) .
$$

Problems Related to the DLOG Problem

- We will now take a look at two problems related but weaker than the DLP; the computational (CDH) and the decisional Diffie-Hellman (DDH) problem
- Let $\mathrm{DH}_{g}\left(\mathrm{~h}_{1}, \mathrm{~h}_{2}\right):=$ gloggh1 $\operatorname{loggh} 2$
- If $h_{1}=g^{x_{1}}$ and $h_{2}=g^{x_{2}}$, then $\operatorname{DH}_{g}\left(h_{1}, h_{2}\right)=g^{x_{1} x_{2}}=h_{1} x_{2}=h_{2}{ }^{x_{1}}$
- CDH Problem
- Given (G, q, g, h_{1}, h_{2}) compute $\mathrm{DH}_{\mathrm{g}}\left(\mathrm{h}_{1}, \mathrm{~h}_{2}\right)$

DEFINITION: We say that the CDH problem is hard relative to G if for all PPT algorithms A there is a negligible function negl such that

$$
\operatorname{Pr}\left[A\left(G, q, g, g^{x}, g^{y}\right)=g^{x y}\right] \leq \operatorname{negl}(n),
$$

where the probabilities are taken over the experiment in which $\mathbf{G}\left(1^{n}\right)$
outputs (G, q, g), and then uniform $x, y Z_{q}$ are chosen.

Problems Related to the DLOG Problem

- DDH Problem
- Given (G, q, g) and uniform random $h_{1}, h_{2} \in G$, distinguish $D H_{g}\left(h_{1}, h_{2}\right)$ from uniformly random $h^{\prime} \in G$
DEFINITION 8.63: We say that the DDH problem is hard relative to G if for all PPT algorithms A there is a negligible function negl such that

$$
\operatorname{Pr}\left[A\left(G, q, g, g^{x}, g^{y}, g^{z}\right)=1\right]-\operatorname{Pr}\left[A\left(G, q, g, g^{x}, g^{y}, g^{x y}\right)=1\right] \leq \operatorname{negl}(n),
$$

where in each case the probabilities are taken over the experiment in which $\mathrm{G}\left(1^{n}\right)$ outputs ($\mathrm{G}, \mathrm{q}, \mathrm{g}$), and then uniform $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{Z}_{\mathrm{q}}$ are chosen.

Clearly, if we can solve DL, then we can solve DDH and CDH
DDH is a stronger assumption than CDH
There are groups where the CDH is assumed hard, but the DDH is easy

Algorithms for Computing Discrete Logarithms

- Two types of algorithms
- Generic ones: apply to arbitrary groups
- Specific ones: tailored to work for some specifc class of groups

Generic for groups of order q:
-Baby step/giant step (Shanks)*: O(Vq • polylog(q)) time and O($\sqrt{ } q)$ space
-Pollard's rho*: O($\sqrt{ }$ • polylog(q)) time and constant space
Generic for groups of order q (if factorization is known/easy to compute):
-Pohlig-Hellman: Reduces to finding DL in group of order q' with q' the largest prime dividing q (use then any algorithm to solve the DL) Specific algorithm for Z^{*} :
-Index Calculus/ Number Field Sieve: Subexponential with runtime $2^{O}((\log p) 1 / 3 \cdot(\log \log p) 2 / 3)$

The Baby-Step/Giant-Step Algorithm I/II

- Want to solve DL problem for some $h=g^{\times}$in (G, q, g)
- We know that h must lie somwhere in the cycle $\left\{\mathrm{g}^{0}, \ldots, \mathrm{~g}^{-1}\right\}$
- Computing all elements would take $\Omega(q)$ time!
- Take some elements of the cycle at steps $\mathrm{t}=\lfloor\sqrt{ } \mathrm{q}\rfloor$ (the "giant steps")
- Gives us a list ($\mathrm{g}^{0}, \mathrm{~g}^{\mathrm{t}}, \mathrm{g} 2 \mathrm{t}, \ldots, \mathrm{glq} / \mathrm{t} \cdot \mathrm{t}$) with gaps of at most t elements
- We know h lies in one of the gaps
- Compute a list (h•g", ..., h.gt) of shifts of h (the "baby steps")
- One of the points in the "baby list" will be equal to one in the "giant list", i.e., h.gi = gk.t for some i and k
- And determine $x=(k t-i) \bmod q$

The Baby-Step/Giant-Step Algorithm II/II

- Complexity
- $\mathrm{O}(\sqrt{ } \mathrm{q})$ exponentiations/multiplications
- Sorting the "giant list" takes $\mathrm{O}(\sqrt{ } \mathrm{q} \cdot \log \mathrm{q})$
- Binary search for each element from "baby list" in O(log q)
- Overall $O(\sqrt{ } q \cdot \operatorname{polylog}(q))$ time but need to store $O(\sqrt{ } q)$ elements
- Can we do better generically?

The Pollard Rho Algorithm*

- Idea: Let $\mathrm{H}_{\mathrm{g}, \mathrm{h}}: \mathbf{Z}_{\mathrm{q}} \times \mathbf{Z}_{\mathrm{q}} \rightarrow \mathrm{G}$ be defined by $H_{g, h}\left(x_{1}, x_{2}\right)=g^{x_{1}} \cdot h^{x_{2}}$
- The birthday bound says we find a collision in $\mathrm{H}_{\mathrm{g}, \mathrm{h}}$ in time $\mathrm{O}(\sqrt{\mathrm{q}})$
- Is possible with constant memory (see §5.4.2)
- If $\mathrm{H}_{\mathrm{g}, \mathrm{h}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{H}_{\mathrm{g}, \mathrm{h}}\left(\mathrm{x}_{1}{ }^{\prime}, \mathrm{x}_{2}{ }^{\prime}\right)$ with $\mathrm{x}_{1}{ }^{\prime} \neq \mathrm{x}_{1}$ and $\mathrm{x}_{2}{ }^{\prime} \neq \mathrm{x}_{2}$
 then solve $y\left(x_{2}-x_{2}^{\prime}\right)=\left(x_{1}^{\prime}-x_{1}\right) \bmod q$ for y
- Some issues not yet considerd
- Range of hash function must be subset of its domain: Use a standard cryptographic hash function $\mathrm{F}: \mathrm{G} \rightarrow \mathbf{Z}_{\mathrm{q}} \times \mathbf{Z}_{\mathrm{q}}$ to obtain the input for G

Choice of Discrete Logarithm Hard Groups

- Generic vs. special algorithms
- If only generic algorithms are available parameters can be chosen much smaller; Yields more efficient group operations
- Prime order vs. composite order groups
- Prime order: Discrete logarithm problem is hardest in prime order groups and finding generators is trivial
- Composite order: Need to have subgroup of sufficient size (recall: largest prime dividing the order; may need to consider specific algorithms). Finding generators is more cumbersome.
- Prime order groups are preferable (there are some more reasons why discussed later)

Choice of Discrete Logarithm Hard Groups

- Groups that are of interest
- Z_{p}^{*} (does not have prime order)
- Prime order q subgroups of $Z^{*}{ }_{p}$
- Elliptic curve groups

What about \mathbf{Z}_{p} with addition?

	RSA	Discrete Logarithm	
Effective Key Length	Modulus Length	Order- q Subgroup of \mathbb{Z}_{p}^{*}	Elliptic-Curve Group Order q
112	2048	$p: 2048, q: 224$	224
128	3072	$p: 3072, q: 256$	256
192	7680	$p: 7680, q: 384$	384
256	15360	$p: 15360, q: 512$	512

Key sizes recommended by NIST (from §9.3)

Prime Order Subgroups of $Z_{\text {* }}^{*}$

- We can "craft" p in a way that it has a prime order q subgroup of desired size

THEOREM 8.64 Let $p=r q+1$ with p, q prime. Then

$$
G=\left\{h^{r} \bmod p \mid h \in Z_{p}^{*}\right\}
$$

is a subgroup of Z_{p}^{*} of order q.
p is called safe prime if $r=2$

- Choosing uniform element in G?
- Choose random h from Z_{p}^{*} and compute $h r \bmod p$
- Determine if given h is in G (any $h \neq 1$ that is in G is a generator)
- Check if $h q=1 \bmod p$
p and q need to be chosen such that the running time of the NFS (depends on the length of p), and the running time of generic algorithms (depends on the length of q) will be approximately equal.

- Groups discussed so far directly rely on modular arithmetic
- Why not use different groups? Elliptic curve groups?
- Only generic algorithms for the DLP known!

Rationale: "it is extremely unlikely that an index calculus attack on the elliptic curve method will ever be able to work" [Miller, 85]

What are Elliptic Curves?

- An elliptic curve E over a field (we only condsider \mathbf{Z}_{p} with $p \geq 5$, and in particular large p) is a cubic equation

$$
y^{2}=x^{3}+a x+b \quad \text { (short Weierstrass equation) }
$$

with $a, b \in Z_{p}$ and $-16\left(4 a^{3}+27 b^{2}\right) \neq 0 \bmod p$ (the curve is "smooth")

- Let $E\left(Z_{p}\right)=\left\{(x, y) \mid x, y \in Z_{p}\right.$ and $\left.y^{2}=x^{3}+a x+b \bmod p\right\} \cup\{O\}$
- The elements in $E\left(Z_{p}\right)$ are called the points on the elliptic curve E
- \mathbf{O} is called the point at infinity (it will act as the identiy)

Elliptic Curves over the Reals

A useful way to think about $E\left(Z_{p}\right)$ is to look at the graph over the reals

(a) $E_{1}: y^{2}=x^{3}-x$

(b) $E_{2}: y^{2}=x^{3}+\frac{1}{4} x+\frac{5}{4}$

We can think of the point at infinity of sitting on top of the y-axis and lying on every vertical line
Every line intersecting the curve intersects in exactly three points

- Point P is counted twice if line is tangent to the curve
- Point at infinity is counted when the line is vertical

Elliptic Curves: Group Law ("chord-and-tangent rule")

- $E\left(Z_{p}\right)$ forms a group with additive identity O
$-O+P=P+O=P$ for all $P \in E\left(Z_{p}\right)$
- If $P=(x, y) \in E\left(Z_{p}\right)$, then $(x, y)+(x,-y)=0$ and $-O=O$

(a) Addition: $P+Q=R$.
$x_{3}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2} \quad$ and $\quad y_{3}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x_{1}-x_{3}\right)-y_{1}$.

(b) Doubling: $P+P=R$.
$x_{3}=\left(\frac{3 x_{1}^{2}+a}{2 y_{1}}\right)^{2}-2 x_{1}$ and $y_{3}=\left(\frac{3 x_{1}^{2}+a}{2 y_{1}}\right)\left(x_{1}-x_{3}\right)-y_{1}$.

Elliptic Curves

- For cryptographic applications and in particular for the DLP to be hard we need (sub-) groups of large prime order.
- How large are these elliptic curve groups?
- Let us define a quadratic residue (QR): An element $y \in Z_{p}^{*}$ is a quadratic residue modulo p if there is an $x \in Z_{p}^{*}$ such that $x^{2}=y \bmod p$.
- For p > 2 prime, half the elements in \mathbf{Z}_{p}^{*} are QRs, and every QR has exactly two square roots.
- If we look at the equation $y^{2}=x^{3}+a x+b$, each RHS value that is a QR yields two points on the curve and if RHS is 0 it yields one
- So we heuristically expect to find expect to find $2 \cdot(p-1) / 2+1=p$ points + the point of infinitey, i.e., $\mathrm{p}+1$ points.

THEOREM 8.70 (Hasse bound): Let p be prime, and let E be an elliptic curve over Z_{p}. Then $p+1-2 \sqrt{p} \leq\left|E\left(Z_{p}\right)\right| \leq p+1+2 \sqrt{p}$.

Elliptic Curves

- How to find curves?
- We could just randomly generate them: But for random curves the group order will be "close" to uniformly distributed in the Hasse interval
- We also need to exclude weak curves, i.e., elliptic-curve groups over $Z^{*}{ }_{p}$ whose order is equal to p (anomalous curves) or $\mathrm{p}+1$ (supersingular curves), etc.
- There are efficient algorithms for counting points on curves, efficiently generating curves
- Typically we use pre-computed standardized curves
- Standards for Efficient Cryptogrpahy (SEC)
- National Institute of Standards and Technology (NIST)
- ECC Brainpool (RFC 5639)
- Curve25519, Curve448
- Or BN or BLS if they need to be pairing-friendly

Elliptic Curves

- Now if we have a suitable elliptic curve group $E\left(Z_{p}\right)$ (or a subgroup) of large prime order q generated by P, we can define the set $\{1 P, \ldots$, qP\}
- We can define the elliptic curve DLP (ECDLP) as given $\mathrm{Q}=\mathrm{xP}$ to compute $x \in Z_{q}$
- Analogously we can define CDH and DDH
- We can use our efficient square-and-multiply algorithm and apply it to this setting (double-and-add) to compute the scalar multiplication efficiently

Elliptic Curves

- Although curves standardized decades ago are still widely used, there happened a lot in the last decades
- Starting with Kocher'99, side-channel attacks and their countermeasures have become extremely sophisticated
- Decades of new research yielding faster, simpler and safer ways to do ECC
- Suspicion surrounding previous standards: Snowden leaks, dual ECDRBG backdoor, etc., lead to conjectured weaknesses in the NIST curves
- Other specific classes of curves enable secure cryptographic pairings
- and thus interesting applications such as practical identity- and attributebased cryptography (see Guest Lecture)

Back to Key Exchange Protocols

Example: KE in Z_{p}^{*} (128 bit security - p: 3072 bit)

$p=$

58096059953699580628595025333045743706869751763628952366614861522872037309971102257373360445331184072513261577549805174439905295945400471216628856721 8703240103211163970644049884404985098905162720024476580704181239472968054002410482797658436938152229236120877904476989274322575173807697956881130957 91255113330932435195537848163063815801618602002474925684481502425153044495771876041364287385809901725515739341462558303664059150008696437320532185668 32545291107903722831634138599586406690325959725187447169059540805012310209639011750748760017095360734234945757416272994856013308616958529958304677637 01918159408852834506128586389827176345729488354663887955431161544644633019925438234001629205709075117553388816191898729559153153669870129226768546551 743791579082315484463478026010289171803249539607504189948551381112697730747896907485704371071615012131592202455675924123901315291971095646840637944291 4941614357107914462567329693649

a = 7147687166405957187905360554339658269 240518614591652223549126157152970971006 79170037904924333111601449788108998769 61315928313836326210995129494455444000997 4889298038554931918128445723221023987
16043906200617648318875457562337708
 58452549917223378772756695589845219962 202945089226966507426526912780244641 640990259271040043389582614419862375 87898819367218794559918028640626798648 3957813927304368495559776413009721221 82491581096457937635455665544629883777
85956808915882151127554220422646379 8595680899578821511273574220422646379 67778961749230720729760345588026210721 092205466273969774855354375899087960 888262763290293452560094576029847391 361388767543886622492652999780598864 7241453046219452761819889974647252908 8780604931795419514638292288904557780
45929437305254504551892602029519
 39838511434255084273119820368274789460
587100304977470992427898969915721 2096357725203480402449913844583448
$g=123456789$

$g^{a} \bmod p=$

197496648183227193286262018614250555971909799762533760654008147994875775445667054218578105133138217497206890599554928429450667899476 854668595594034093493637562451078938296960313488696178848142491351687253054602202966247046105770771577248321682117174246128321195678 537631520278649403464797353691996736993577092687178385602298873558954121056430522899619761453727082217823475746223803790014235051396 799049446508224661850168149957401474638456716624401906701394472447015052569417746372185093302535739383791980070572381421729029651639 304234361268764971707763484300668923972868709121665568669830978657804740157916611563508569886847487772676671207386096152947607114559 706340209059103703018182635521898738094546294558035569752596676346614699327742088471255741184755866117812209895514952436160199336532 6052422101474898256696660124195726100495725510022002932814218768060112310763455404567248761396399633344901857872119208518550803791724

$$
g^{\mathrm{b}} \bmod \mathrm{p}=
$$

b = 577019369882685976279047911306230897 863428283798589097017957365590672835 6438957122460760949509620363866193 52298860635410053224484639158979864 210273772558373965486539312854838650 09031919742048649235894391903529930 267696100508840431979272991603892747 88623286193422239171712154568612530 276018808591500424849476686706784 370687153977068526645326383324039837 4116046620695933066832285256534418724107779992205720799935743972371563687620383783327424719396665449687938178193214952698336131693173837969702262426137716316320449382 98616481132079561694995740051820638531029247552928455062624713293012402770314013122096877114278839484659281611107827519695525804517892060398087034035751004673370850 705254016469773509936925361994895894163065551105161929613139219782198757542984826465893457768888915561514505048091856159412977576048387148822224875309641791879395483 07356322557280988097005839650171966585311010130843264742778656552512132877258716784203762419014390978793866584200569191199739672645 §546200348849305403999505191916794 110758448552553744288464337906540312125397571803103278271979007681841394534114315726120595749993896347981789310754194864577435905673 24055585570932193507471557775695981 1729700335965844452066712238743995765602919548561681262366573815194145929420370183512324404671912281455859090458612780918001663308168183528465724969562186437214972625 $4 Q 7323844719948807012687304886027922176162928196104625521958432771481724862624396241361307595677001801738572499949511777914941688218822544865996160464558546299370165$ $\xrightarrow{8569657092689604427965012098770368845}$ 0012467927615639176399597363830386653 62727158
330166919524192149323761733598426244691224199958894654036331526394350099088627302979833339501183059198113987880066739 419999231378970715307039317876258453876701124443849520979430233302777503265010724513551209279573183234934359636696506 968325769489511028943698821518689496597758218540767517885836464160289471651364552490713961456608536013301649753975875 950372251336932673571743428823026014699232071116171392219599691096846714133643382745709376112500514300983651201961186 13464267685926563624589817259637248558104903657371981684417053993082671827345252841433337325420088380059232089174946 086536664984836041334031650438692639106287627157575758383128971053401037407031731509582807639509448704617983930135028 7596589383292751993079161318839043121329118930009948197899907586986108953591420279426874779423560221038468

Example: KE using Elliptic Curves (128 bit security - p: 256 bit)

NIS I curve P-

$$
p=2^{256}-2^{224}+2^{192}+2^{96}-1
$$

$p=115792089210356248762697446949407573530086143415290314195533631308867097853951$

$$
E\left(F_{p}\right): y^{2}=x^{3}-3 x+b
$$

$a=$ 89130644591246 03357763977064 14628550231450 28492835255603 183721922317324 614395
$\mathrm{P}=$
\#E = 115792089210356248762697446949407573529996955224135760342422259061068512044369
(48439561293906451759052585252797914202762949526041747995844080717082404635286, $36134250956749795798585127919587881956611106672985015071877198253568414405109)$ $a P=$
(8411620826131589816759306786820052561234422188633 3785331584793435449501658416 , 102885655542185598026739250172885300109680266058

Diffie-Hellman(-Merkle) KE Protocol

- Now we are going to abstract away again the concrete setting and consider a group G of prime order q and generator g

$$
a \leftarrow \mathbb{Z}_{q} ; A \leftarrow g^{a} \quad b \leftarrow \mathbb{Z}_{q} ; B \leftarrow g^{b}
$$

Ok, how to prove security of this protocol?

- Under DL? Other means of computing shared key?
- Under CDH? Only the complete shared key protected?
- Under DDH?
* definitional framework and idea of formulating assumptions not known back in the 70ies

Security Definition

$\widehat{\mathrm{KE}}_{\mathcal{A}, \sqcap}^{\text {eav }}$ Security security parameter $n \in \mathbb{N} \quad(G, q, g) \leftarrow \$\left(1^{n}\right)$

A key-exchange protocol Π is secure in the presence of an eavesdropper if for every PPT adversary \mathcal{A}

$$
\operatorname{Pr}\left[b=b^{*}\right] \leq 1 / 2+\operatorname{negl}(n)
$$

Analysis of the DH(M) KE Protocol

THEOREM 10.3: If the DDH problem is hard relative to G, then the DiffieHellman key-exchange protocol Π is secure in the presence of an eavesdropper (with respect to experiment $\widehat{\kappa \mathbb{K}} \widehat{\mathcal{A}}_{\text {en }}^{\text {eav }}$).

Proof: Let A be a PPT adversary.

- Since $\operatorname{Pr}[b=0]=\operatorname{Pr}[b=1]=1 / 2$, we have
$\operatorname{Pr}\left[\widehat{\mathrm{KE}} \mathrm{E}_{\mathcal{A}, \Pi}^{\mathrm{eav}}(n)=1\right]$
$=1 / 2 \cdot \operatorname{Pr}\left[\widehat{\mathrm{KE}}_{\mathcal{A}, \Pi}^{\mathrm{eav}}(n)=1 \mid b=0\right]+1 / 2 \cdot \operatorname{Pr}\left[\widehat{\mathrm{KE}}_{\mathcal{A}, \Pi}^{\mathrm{eav}}(n)=1 \mid b=1\right]$
$=1 / 2 \cdot \operatorname{Pr}\left[\mathcal{A}\left(G, q, g, g^{x}, g^{y}, g^{x y}\right)=0\right]+1 / 2 \cdot \operatorname{Pr}\left[\mathcal{A}\left(G, q, g, g^{x}, g^{y}, g^{z}\right)=1\right]$
$=1 / 2 \cdot\left(1-\operatorname{Pr}\left[\mathcal{A}\left(G, q, g, g^{x}, g^{y}, g^{x y}\right)=1\right]\right)+1 / 2 \cdot \operatorname{Pr}\left[\mathcal{A}\left(G, q, g, g^{x}, g^{y}, g^{z}\right)=1\right]$
$=1 / 2+1 / 2 \cdot\left(\operatorname{Pr}\left[\mathcal{A}\left(G, q, g, g^{x}, g^{y}, g^{z}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(G, q, g, g^{x}, g^{y}, g^{x y}\right)=1\right]\right)$
$=1 / 2+1 / 2 \cdot\left|\operatorname{Pr}\left[\mathcal{A}\left(G, q, g, g^{x}, g^{y}, g^{z}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(G, q, g, g^{x}, g^{y}, g^{x y}\right)=1\right]\right|$,
$\leq \operatorname{negl}(n)$
$\operatorname{Pr}\left[\widehat{\mathrm{KE}}_{\mathcal{A}, \Pi}^{\mathrm{eav}}(n)=1\right] \leq 1 / 2+1 / 2 \cdot \operatorname{negl}(n)$.

Analysis of the $\mathrm{DH}(\mathrm{M}) \mathrm{KE}$ Protocol

- Summary
- Can prove eavesdropping security under DDH (not surprising; the assumption was basically modeled to abstract the analysis of these protocols)
- What did we miss so far?
- Active adversaries: Man-in-the-middle

$$
m \longleftarrow \mathbb{Z}_{q} ; M \leftarrow g^{m}
$$

Countering man-in-the-middle attacks (Authenticated KE - AKE)

Will talk about signatures soon!

Certified signature verification key

Perfect Forward Secrecy

Another important property: Perfect forward secrecy

Alternatives to DL based KE Protocols: Outlook

- Shor: computing discrete logarithms (and factoring) in polynomial time on a quantum computer
- If we have a sufficiently powerful quantum computer, then DL and ECDL (as well as factoring) based systems will be dead

Peter Shor

- What to do if this should happen?
- Post-quantum cryptography: (asymmetric) cryptography that is conjectured to resists attacks using classical and quantum computers
- Very active field of research
- Lattices
- Codes

NGT

National Institute of

 Standards and TechnologyU.S. Department of Commerce

- Isogenies (e.g., on supersingular elliptic curves - weak for EC crypto but good for PQ)
- Etc.

