Modern Cryptography: Lecture 10 The Public Key Revolution II/II

Daniel Slamanig

Organizational

- Where to find the slides and homework?
 - https://danielslamanig.info/ModernCrypto19
- How to contact me?
 - daniel.slamanig@ait.ac.at
- Tutors: Guillermo Perez, Karen Klein
 - guillermo.pascualperez@ist.ac.at; karen.klein@ist.ac.at
- Official page at TU, Location etc.
 - https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3463&dsrid =417&courseNr=192062&semester=2019W
- Tutorial, TU site
 - https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=3593&dsrid =246&courseNr=192063
- Exam for the second part: Thursday 30.01.2020 15:00-17:00 (Tutorial slot)

Discrete Logarithms

- We consider a cyclic group G of order q with generator g, so G = {g⁰, ..., g^{q-1}}
- The DL problem: given $h=g^x$ to find the unique $x \in Z_q$
- Let G be a group generator that on input 1ⁿ outputs a description of a cyclic group (G, q, g) with ||q||=n (binary length)

<u>The discrete-logarithm experiment DLog_{AG} (n):</u>

1. Run $G(1^n)$ to obtain (G, q, g), where G is a cyclic group of order q (with ||q|| = n), and g is a generator of G. 2. Choose a uniform $h \in G$.

3. A is given G, q, g, h, and outputs $x \in Z_{a}$.

4. The output of the experiment is defined to be 1 if $g^x = h$, and 0 otherwise.

Discrete Logarithms

- We consider a cyclic group G of order q with generator g, so G = {g⁰, ..., g^{q-1}}
- The DL problem: given $h=g^x$ to find the unique $x \in \mathbb{Z}_q$
- Let G be a group generator that on input 1n outputs a description of a cyclic group (G, q, g) with ||q||=n (binary length)

<u>The discrete-logarithm experiment DLog_{A.G} (n):</u>

1. Run $G(1^n)$ to obtain (G, q, g), where G is a cyclic group of order q (with ||q|| = n), and g is a generator of G.

<u>DEFINITION 8.62</u> We say that the discrete-logarithm problem is hard

relative to ${\bf G}$ if for all PPT algorithms ${\bf A}$ there exists a negligible function negl such that

 $Pr[DLog_{A,G}(n) = 1] \le negl(n).$

Problems Related to the DLOG Problem

- We will now take a look at two problems related but weaker than the DLP; the computational (CDH) and the decisional Diffie–Hellman (DDH) problem
- Let $\mathbf{DH}_{g}(h_1, h_2) := g^{\log_g h_1 \cdot \log_g h_2}$
 - If $h_1 = g^{x_1}$ and $h_2 = g^{x_2}$, then $DH_g(h_1, h_2) = g^{x_1x_2} = h_1^{x_2} = h_2^{x_1}$
- CDH Problem
 - Given (G, q, g, h_1 , h_2) compute $DH_g(h_1, h_2)$

<u>DEFINITION</u>: We say that the CDH problem is hard relative to **G** if for all PPT algorithms **A** there is a negligible function negl such that $Pr[\mathbf{A}(G, q, g, g^x, g^y) = g^{xy}] \le negl(n),$ where the probabilities are taken over the experiment in which $\mathbf{G}(1^n)$ outputs (G, q, g), and then uniform x, y \mathbf{Z}_q are chosen. • DDH Problem

– Given (G, q, g) and uniform random h_1 , $h_2 \in G$, distinguish $DH_g(h_1, h_2)$ from uniformly random $h' \in G$

<u>DEFINITION 8.63:</u> We say that the DDH problem is hard relative to ${\bf G}$ if for all PPT algorithms ${\bf A}$ there is a negligible function negl such that

 $\Pr[\mathbf{A}(G, q, g, g^{x}, g^{y}, g^{z}) = 1] - \Pr[\mathbf{A}(G, q, g, g^{x}, g^{y}, g^{xy}) = 1] \le \operatorname{negl}(n),$

where in each case the probabilities are taken over the experiment in which $G(1^n)$ outputs (G, q, g), and then uniform x, y, $z \in Z_n$ are chosen.

Clearly, if we can solve DL, then we can solve DDH and CDH

DDH is a stronger assumption than CDH

There are groups where the CDH is assumed hard, but the DDH is easy

- Two types of algorithms
 - <u>Generic ones</u>: apply to arbitrary groups
 - <u>Specific ones</u>: tailored to work for some specifc class of groups

Generic for groups of order q:

-Baby step/giant step (Shanks)*: $O(\sqrt{q} \cdot \text{polylog}(q))$ time and $O(\sqrt{q})$ space -Pollard's rho*: $O(\sqrt{q} \cdot \text{polylog}(q))$ time and constant space

Generic for groups of order q (if factorization is known/easy to compute):

-Pohlig-Hellman: Reduces to finding DL in group of order q' with q' the largest prime dividing q (use then any algorithm to solve the DL)

Specific algorithm for Z_{p}^{*} :

-Index Calculus/Number Field Sieve: Subexponential with runtime 2^{O((log p)1/3 ·(log log p)2/3)}

The Baby-Step/Giant-Step Algorithm I/II

- Want to solve DL problem for some h=g^x in (G, q, g)
- We know that h must lie somwhere in the cycle {g⁰, ..., g^{q-1}}
 - Computing all elements would take $\Omega(q)$ time!
- Take some elements of the cycle at steps $t=\lfloor \sqrt{q} \rfloor$ (the "giant steps")
 - Gives us a list (g^0 , g^t , g^{2t} , ..., $g^{lq/tJ\cdot t}$) with gaps of at most t elements
 - We know h lies in one of the gaps
 - Compute a list (h·g^{1,} ..., h·g^t) of shifts of h (the "baby steps")
 - One of the points in the "baby list" will be equal to one in the "giant list", i.e., h·gⁱ = g^{k·t} for some i and k
 - And determine $x = (kt i) \mod q$

The Baby-Step/Giant-Step Algorithm II/II

- Complexity
 - $O(\sqrt{q})$ exponentiations/multiplications
 - Sorting the "giant list" takes $O(\sqrt{q} \cdot \log q)$
 - Binary search for each element from "baby list" in **O**(log q)
 - Overall $O(\sqrt{q} \cdot polylog(q))$ time <u>but need to store</u> $O(\sqrt{q})$ elements

• Can we do better generically?

The Pollard Rho Algorithm*

- Idea: Let $H_{g,h}$: $Z_q \times Z_q \rightarrow G$ be defined by $H_{g,h}(x_1, x_2) = g^{x_1} \cdot h^{x_2}$
- The birthday bound says we find a collision in $H_{g,h}$ in time $\textbf{O}(\sqrt{q})$
- Is possible with constant memory (see §5.4.2)
- If $H_{g,h}(x_1, x_2) = H_{g,h}(x_1', x_2')$ with $x_1' \neq x_1$ and $x_2' \neq x_2$ then solve $\gamma(x_2 - x_2') = (x_1' - x_1) \mod q$ for γ
- Some issues not yet considerd
 - Range of hash function must be subset of its domain: Use a standard cryptographic hash function F: G $\rightarrow Z_q \times Z_q$ to obtain the input for G

- Generic vs. special algorithms
 - If only generic algorithms are available parameters can be chosen much smaller; Yields more efficient group operations
- Prime order vs. composite order groups
 - <u>Prime order</u>: Discrete logarithm problem is hardest in prime order groups and finding generators is trivial
 - <u>Composite order</u>: Need to have subgroup of sufficient size (recall: largest prime dividing the order; may need to consider specific algorithms). Finding generators is more cumbersome.
- Prime order groups are preferable (there are some more reasons why discussed later)

Choice of Discrete Logarithm Hard Groups

- Groups that are of interest
 - Z_{p}^{*} (does not have prime order)
 - Prime order q subgroups of Z_p^*
 - Elliptic curve groups

What about Z_p with addition?

	\mathbf{RSA}	Discrete Logarithm	
Effective Key Length	Modulus Length	$\mathbf{Order-} q \ \mathbf{Subgroup} \ \mathbf{of} \ \mathbb{Z}_p^*$	Elliptic-Curve Group Order q
$ 112 \\ 128 \\ 192 \\ 256 $	$2048 \\ 3072 \\ 7680 \\ 15360$	$\begin{array}{c} p:\ 2048,\ q:\ 224\\ p:\ 3072,\ q:\ 256\\ p:\ 7680,\ q:\ 384\\ p:\ 15360,\ q:\ 512 \end{array}$	$224 \\ 256 \\ 384 \\ 512$

Key sizes recommended by NIST (from §9.3)

Prime Order Subgroups of Z^*_{p}

• We can "craft" p in a way that it has a prime order q subgroup of desired size

<u>THEOREM 8.64</u> Let p = rq + 1 with p, q prime. Then $G = \{h^r \mod p \mid h \in \mathbb{Z}^*_p\}$

is a subgroup of Z_{p}^{*} of order q.

p is called safe prime if r=2

- Choosing uniform element in G?
 - Choose random h from Z_{p}^{*} and compute h^r mod p
- Determine if given h is in G (any h≠1 that is in G is a generator)
 - Check if $h^q = 1 \mod p$

p and q need to be chosen such that the running time of the NFS (depends on the length of p), **and** the running time of generic algorithms (depends on the length of q) **will be approximately equal**.

Elliptic Curves

Neal Koblitz: **Elliptic Curve Cryptosystems**. Mathematics of Computation, AMS, 1987.

> Victor S. Miller: **Use of Elliptic Curves in Cryptography**. Advances in Cryptology – CRYPTO '85

- Groups discussed so far <u>directly</u> rely on modular arithmetic
- Why not use different groups? Elliptic curve groups?
 - Only generic algorithms for the DLP known!

Rationale: "it is extremely unlikely that an index calculus attack on the elliptic curve method will ever be able to work" [Miller, 85]

 An elliptic curve E over a field (we only condsider Z_p with p ≥ 5, and in particular large p) is a cubic equation

 $y^2 = x^3 + ax + b$ (short Weierstrass equation)

with a, $b \in \mathbb{Z}_p$ and $-16(4a^3 + 27b^2) \neq 0 \mod p$ (the curve is "smooth")

- Let $E(Z_p) = \{(x, y) \mid x, y \in Z_p \text{ and } y^2 = x^3 + ax + b \mod p\} \cup \{O\}$
 - The elements in $E(Z_p)$ are called the points on the elliptic curve E
 - O is called the point at infinity (it will act as the identiy)

Elliptic Curves over the Reals

A useful way to think about $E(\mathbf{Z}_p)$ is to look at the graph over the reals

We can think of the point at infinity of sitting on top of the y-axis and lying on every vertical line

Every line intersecting the curve intersects in exactly three points

- Point P is counted twice if line is tangent to the curve
- Point at infinity is counted when the line is vertical

Elliptic Curves: Group Law ("chord-and-tangent rule")

- E(**Z**_p) forms a group with additive identity **O**
 - O + P = P + O = P for all $P \in E(Z_p)$
 - If $P = (x, y) \in E(Z_p)$, then (x, y) + (x, -y) = O and -O = O

Elliptic Curves

- For cryptographic applications and in particular for the DLP to be hard we need (sub-) groups of large prime order.
- How large are these elliptic curve groups?
 - Let us define a quadratic residue (QR): An element $y \in \mathbb{Z}_p^*$ is a quadratic residue modulo p if there is an $x \in \mathbb{Z}_p^*$ such that $x^2 = y \mod p$.
 - For p > 2 prime, half the elements in Z^{*}_p are QRs, and every QR has exactly two square roots.
 - If we look at the equation y² = x³ + ax + b, each RHS value that is a QR yields two points on the curve and if RHS is 0 it yields one
 - So we heuristically expect to find expect to find $2 \cdot (p 1)/2 + 1 = p$ points + the point of infinitey, i.e., p+1 points.

<u>THEOREM 8.70 (Hasse bound)</u>: Let p be prime, and let E be an elliptic curve over Z_p . Then p + 1 - 2 $\sqrt{p} \le |E(Z_p)| \le p + 1 + 2 \sqrt{p}$.

- How to find curves?
 - We could just randomly generate them: But for random curves the group order will be "close" to uniformly distributed in the Hasse interval
 - We also need to exclude weak curves, i.e., elliptic-curve groups over Z^{*}_p whose order is equal to p (anomalous curves) or p+1 (supersingular curves), etc.
 - There are efficient algorithms for counting points on curves, efficiently generating curves
- Typically we use pre-computed standardized curves
 - Standards for Efficient Cryptogrpahy (SEC)
 - National Institute of Standards and Technology (NIST)
 - ECC Brainpool (RFC 5639)
 - Curve25519, Curve448
 - Or BN or BLS if they need to be pairing-friendly

Elliptic Curves

- Now if we have a suitable elliptic curve group E(Z_p) (or a subgroup) of large prime order q generated by P, we can define the set {1P, ..., qP}
- We can define the elliptic curve DLP (ECDLP) as given Q=xP to compute $x \in \mathbf{Z}_q$
 - Analogously we can define CDH and DDH
- We can use our efficient square-and-multiply algorithm and apply it to this setting (<u>double-and-add</u>) to compute the scalar multiplication efficiently

- Although curves standardized decades ago are still widely used, there happened a lot in the last decades
- Starting with Kocher'99, side-channel attacks and their countermeasures have become extremely sophisticated
- Decades of new research yielding faster, simpler and safer ways to do ECC
- Suspicion surrounding previous standards: Snowden leaks, dual EC-DRBG backdoor, etc., lead to conjectured weaknesses in the NIST curves
- Other specific classes of curves enable secure cryptographic pairings
 - and thus interesting applications such as practical identity- and attributebased cryptography (see Guest Lecture)

Back to Key Exchange Protocols

Example: KE in Z_{0}^{*} (128 bit security – p: 3072 bit)

p =

g = 123456789

 $g^a \mod p =$

a =

 $g^{b} \mod p =$

b =

 $g^{ab} \mod p = \int_{0.655655555674438180357}^{610659655755567474438180357}$ $g_{50372251336932673571743428}^{61046426768592655362458981}$

Example: KE using Elliptic Curves (128 bit security – p: 256 bit)

NIST CUIVE P-

$$p = \frac{256}{2^{256}} - 2^{224} + 2^{192} + 2^{96} - 1$$

 $\mathsf{p} = 115792089210356248762697446949407573530086143415290314195533631308867097853951$

$$E(F_p): y^2 = x^3 - 3x + b$$

#E = 115792089210356248762697446949407573529996955224135760342422259061068512044369 P = (48439561293906451759052585252797914202762949526041747995844080717082404635286.

(8411620826131589816759306786820052561234422188633 3785331584793435449501658416, 102885655542185598026739250172885300109680266058 548048621945393128043427650740)

36134250956749795798585127919587881956611106672985015071877198253568414405109)

aP =

bP =

(101228882920057626679704131545407930245895491542 090988999577542687271695288383, 7788741819030402299411659503455625776080718561567 9689372138134363978498341594) b=

abP = 3, (10122888292005762667970413154540793024589549154209098899957754268727169528838

77887418190304022994116595034556257760807185615679689372138134363978498341594)

Diffie-Hellman(-Merkle) KE Protocol

• Now we are going to abstract away again the concrete setting and consider a group G of prime order q and generator g

Ok, how to prove security of this protocol?

- Under DL? Other means of computing shared key?
- Under CDH? Only the complete shared key protected?
- Under DDH?

* definitional framework and idea of formulating assumptions not known back in the 70ies

Security Definition

A key-exchange protocol Π is secure in the presence of an eavesdropper if for every PPT adversary \mathcal{F}

$$Pr[b = b^*] \le 1/2 + negl(n)$$

Analysis of the DH(M) KE Protocol

<u>THEOREM 10.3</u>: If the DDH problem is hard relative to G, then the Diffie-Hellman key-exchange protocol Π is secure in the presence of an eaves-dropper (with respect to experiment $\widehat{\operatorname{Ke}}_{\mathcal{A},\Pi}^{\operatorname{eav}}$).

<u>Proof:</u> Let A be a PPT adversary.

• Since Pr[b = 0] = Pr[b = 1] = 1/2, we have

 $\begin{aligned} & \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] \\ &= 1/2 \cdot \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 | b = 0] + 1/2 \cdot \Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1 | b = 1] \\ &= 1/2 \cdot \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 0] + 1/2 \cdot \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1] \\ &= 1/2 \cdot (1 - \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1]) + 1/2 \cdot \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1] \\ &= 1/2 + 1/2 \cdot (\Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1]) - \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1]) \\ &= 1/2 + 1/2 \cdot [\Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1] - \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1]) \\ &= 1/2 + 1/2 \cdot [\Pr[\mathcal{A}(G, q, g, g^x, g^y, g^z) = 1] - \Pr[\mathcal{A}(G, q, g, g^x, g^y, g^{xy}) = 1]), \end{aligned}$

≤ negl(n)

 $\Pr[\widehat{\mathsf{KE}}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1] \le 1/2 + 1/2 \cdot \operatorname{negl}(n).$

Analysis of the DH(M) KE Protocol

- Summary
 - Can prove <u>eavesdropping security</u> under DDH (not surprising; the assumption was basically modeled to abstract the analysis of these protocols)
- What did we miss so far?
 - Active adversaries: Man-in-the-middle

Countering man-in-the-middle attacks (Authenticated KE - AKE)

Perfect Forward Secrecy

Another important property: Perfect forward secrecy

Alternatives to DL based KE Protocols: Outlook

- Shor: computing discrete logarithms (and factoring) in polynomial time on a quantum computer
 - If we have a sufficiently powerful quantum computer, then DL and ECDL (as well as factoring) based systems will be dead

Peter Shor

- What to do if this should happen?
 - <u>Post-quantum cryptography</u>: (asymmetric) cryptography that is conjectured to resists attacks using classical and quantum computers
- Very active field of research
 - Lattices
 - Codes
 - Isogenies (e.g., on supersingular elliptic curves weak for EC crypto but good for PQ)
 - Etc.

https://csrc.nist.gov/projects/post-quantum-cryptography

