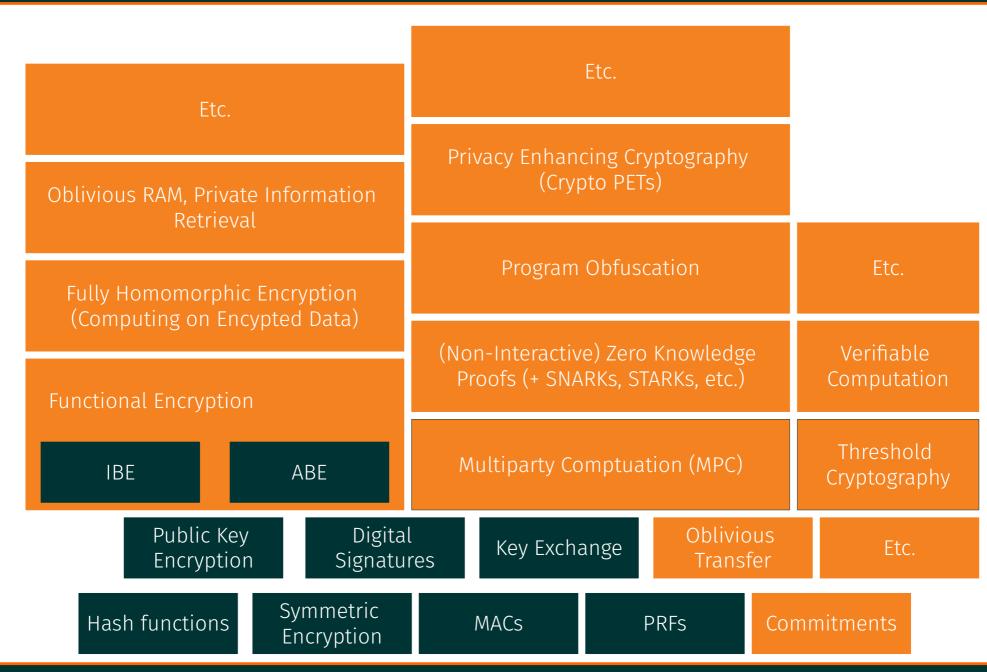
Modern Cryptography: Lecture 15 Selected Topics

Daniel Slamanig

Organizational

- Where to find the slides and homework?
 - https://danielslamanig.info/ModernCrypto18.html
- How to contact me?
 - daniel.slamanig@ait.ac.at
- Tutor: Karen Klein
 - karen.klein@ist.ac.at
- Official page at TU, Location etc.
 - https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&courseNr=192062&semester=2018W
- Tutorial, TU site
 - https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsrid=341&courseNumber=192063&courseSemester=2018W
- Exam for the second part: Thursday 31.01.2019 15:00-17:00 (Tutorial slot)

Topics in Advanced Cryptography...



Selected Topics

Threshold cryptography

- Distribute operations with the secret key sk among a set of parties
- A certain number of participants need to be involved to perform an operation
- Brief primer on Multiparty Computation (MPC)
 - A number of parties can compute any function jointly without revealing their inputs to the other parties

Puncturable Encryption

- Public key encryption with "update capabilities" on the secret key
- Secret key can be punctured on ciphertext s.t. this ciphertext can no longer be decrypted

Threshold Cryptography: Motivation

- If the secret key (of an encryption or signature scheme) is in a single location, this represents a single point of failure
 - Problem that happened in practice, e.g., with Bitcoin ECDSA private keys
- We may want to enforce that a signature generation or decryption is only possible when a certain set of participants agree to do so
- Idea
 - Let a set of parties jointly generate a secret key ("shares" of the key may also be distributed to the parties by a trusted dealer)
 - The public key typically looks like a public key of the underlying scheme
 - So public key operations are as usual
 - Using the secret key (i.e., signing or decryption) requires an interactive protocol between (a subset of the) participants

Secret Sharing

- A <u>dealer</u> shares a secret key between n participants
- Each participant i ∈ {1,..., n} receives a <u>share</u>
- Predefined groups of participants (so called <u>authorized groups</u>) can cooperate to reconstruct the secret from their shares
- <u>Unauthorized groups</u> cannot get any information about the secret

- We will look at (k, n)-threshold secret sharing schemes
 - Every subset of at least k participants of the n participants can reconstruct the secret (is authorized)
 - Any subset of k-1 participants can get no any information about the secret (<u>is unauthorized</u>)

(n,n)-Treshold Secret Sharing

- Let s be a secret from a finite group (G, +)
- The dealer chooses n-1 uniformly random elements s_1 , ..., s_{n-1} from G and computes $s_n = s (s_1 + ... + s_{n-1})$
- The shares are $(s_1, ..., s_n)$ and party i is given share s_i
- Given $(s_1, ..., s_n)$, one can successfully recover $s = s_1 + ... + s_n$
- Given s_i for $i \neq j$: $\Sigma_{i \neq j}$ $s_i = s s_j$ is uniformly random (no information)

Not robust at all!

- If a single participant fails to provide the share reconstruction is not possible
- We are interseted in (k,n)-threshold schemes where k<n

Shamir Secret Sharing

Basis

- Given k points on the plane (x_1, y_1) , ..., (x_k, y_k) , all x_i distinct, there exists an unique polynomial f of degree $\le k 1$, s.t. $f(x_i) = y_i$ for all i
- Holds also in the field \mathbb{Z}_p for p prime
- <u>Constructive proof:</u> Use Lagrange interpolation
- How is this used?
 - Let s be a secret in \mathbb{Z}_p
 - Dealer selects a random degree k-1 polynomial $f(x) = a_{k-1}x^{k-1} + ... + a_1x + a_0$
 - Select a_{k-1} , ..., a_1 uniformly random from \mathbb{Z}_p and set a_0 = s
 - For $i \in \{1, ..., n\}$, give the share $s_i = (i, f(i))$ to the i^{th} participant

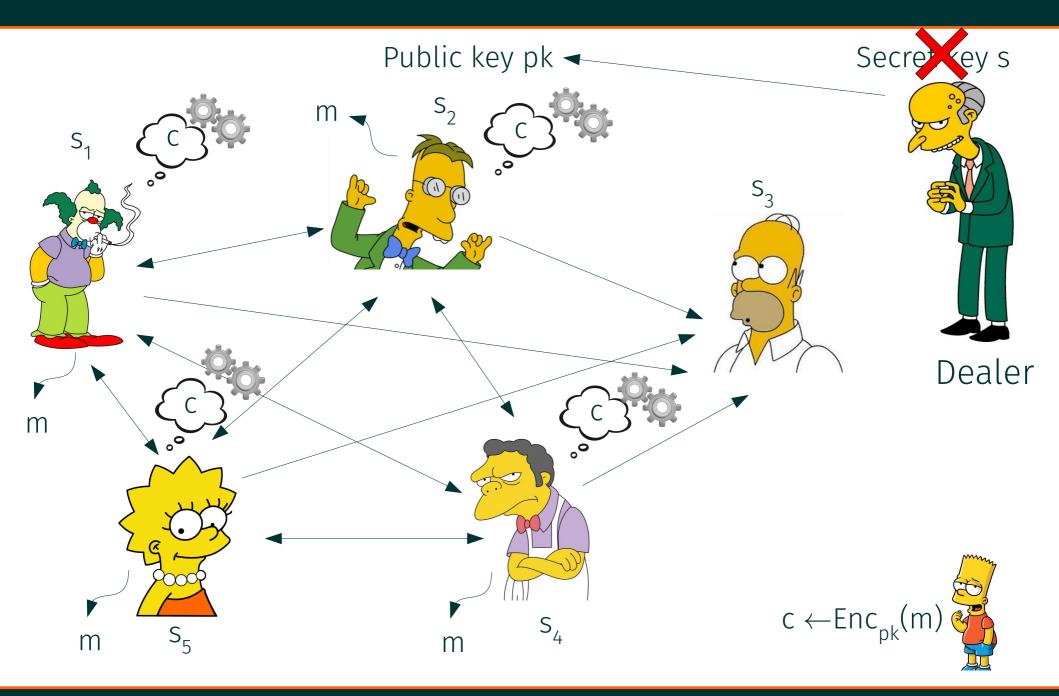
Shamir Secret Sharing

- Correctness: the secret s can be reconstucted from every subset of k shares
 - <u>Proof:</u> By the Langrange formula, given k points (x_i, y_i) , for i = 1, ..., k

$$f(x) = \sum_{i=1}^{k} y_i \prod_{j=1, j \neq i}^{k} \frac{x - x_j}{x_i - x_j} \mod p$$
and consequently
$$s := f(0) = \sum_{i=1}^{k} y_i \prod_{j=1, j \neq i}^{k} \frac{-x_j}{x_i - x_j} \mod p.$$

- Secrecy (perfect): Any subset of up to k 1 shares does not leak any information on the secret
 - <u>Proof:</u> Given k-1 shares (x_i, y_i) every candidate secret $s' \in \mathbb{Z}_p$ corresponds to a unique polynomial of degree k-1 for which f(0)=s'. For all $s' \in \mathbb{Z}_p$ the probabilities Pr[s'=s] are equal.

Threshold Encryption



Threshold ElGamal Encryption

- Let x be the ElGamal secret key and y:=gx the public key (we work in a group G of prime order q generated by g).
- Every participant i receives a share s_i = (i, x_i) of x obtained from Shamir (k,n)-threshold secret sharing
- We observe (notice that Δ_i are publicly computable) that

$$x = \sum_{j \in X} x_j \Delta_j$$
 and $g^x = \prod_{j \in X} (g^{x_j})^{\Delta_j}$

- Given an ElGamal ciphertext $(c_1, c_2) = (g^r, my^r)$ we assume a honst set X of t participants
 - Every participant j in X broadcasts $w_j := (c_1)^{x_j}$
- Everyone in X can recover the plaintext as $m = \frac{c_2}{\prod_{j \in X} w_i^{\Delta_j}} = \frac{m(g^x)^r}{g^r \sum_{j \in X} x_j \Delta_j} = \frac{mg^{rx}}{g^{rx}}$

11/41

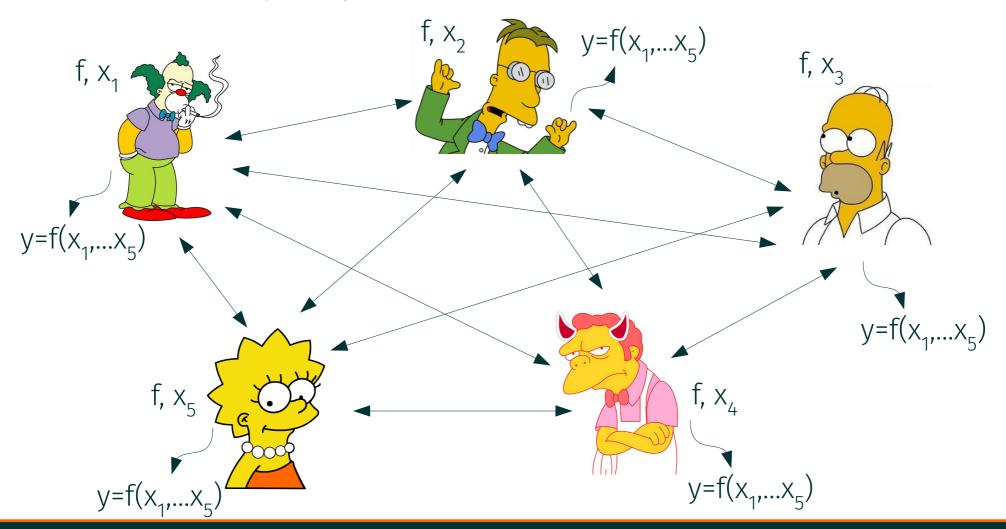
Threshold Cryptography: Remarks

- We have assumed that the parties participating in the decryption are honest
 - Malicious parties can enforce an incorrect result by publishing a malformed w_i value
 - Can be prevented by forcing the parties to prove that the w_j values are well formed (i.e., by attaching a non-interactive zero-knowledge proof)
- Can come up with threshold versions of various signature schemes
 - Schnorr, (EC)DSA, etc.
 - Somewhat hot topic today (cryptocurrencies)

Threshold Signatures are a 'Significant Milestone' in Bitcoin Security

Multiparty Computation

- We have seen a very specific functionality computed in a distributed way without requiring the participants to reveal their secret inputs
- Can we do every computation in such a threshold manner? Yes!



Multiparty Computation

- ullet We look at Ben-Or, Goldwasser, Wigderson (BGW) in a finite field $\mathbb{Z}_{
 m p}$
 - Every possible function in \mathbb{Z}_p is a polynomial
 - We need to show how we can do addition and multiplication
- BGW is a general MPC protocol that provides information theoretic guarantees
 - in the presence of semi-honest adversaries controlling a minority of parties (< n/2)
 - in the presence of malicious adversaries controlling less than a third of the parties (< n/3).

Multiparty Computation

- Use Shamir's (k,n)-threshold secret sharing with k > n/2 (honest majority)
- Every party i has a secret s_i and polynomial f_i(0) = s_i
- Every party j holds shares f_i(j), i ≠j,
- Addition: Given $f_1(j)$ and $f_2(j)$ just add the shares: participants then share the polynomial $f_1 + f_2$ with $(f_1 + f_2)(0) = s_1 + s_2$.
- Multiplication: if $h = (f_1 \cdot f_2)$ then $h(0) = s_1 \cdot s_2$
 - However, h would have degree deg f_1 + deg f_2 = 2k 2
 - Coefficients of h are not uniformly random
 - After every multiplication the parties perform a simple protocol that reduces the degree of h and adds uniformly random values to all coefficients of h, except to h₀

Puncturable Encryption

- Public key encryption with "update capabilities" on the secret key
- Secret key can be punctured on ciphertext s.t. this ciphertext can no longer be decrypted

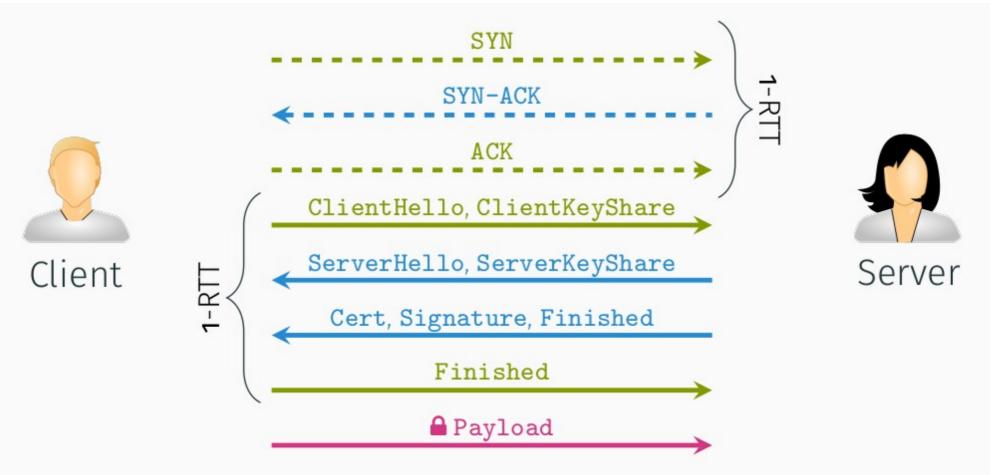
Conventional encryption scheme:

- (KeyGen, Enc, Dec)
- + Additional algorithm $\mathbf{Q}' \leftarrow \text{Punc}(\mathbf{Q}, C)$

Properties

- • no longer useful to decrypt C
- **Q**' still useful to decrypt other ciphertexts
- Repeated puncturing possible

Puncturable Encryption: Application fs 0-RTT Key Exchange

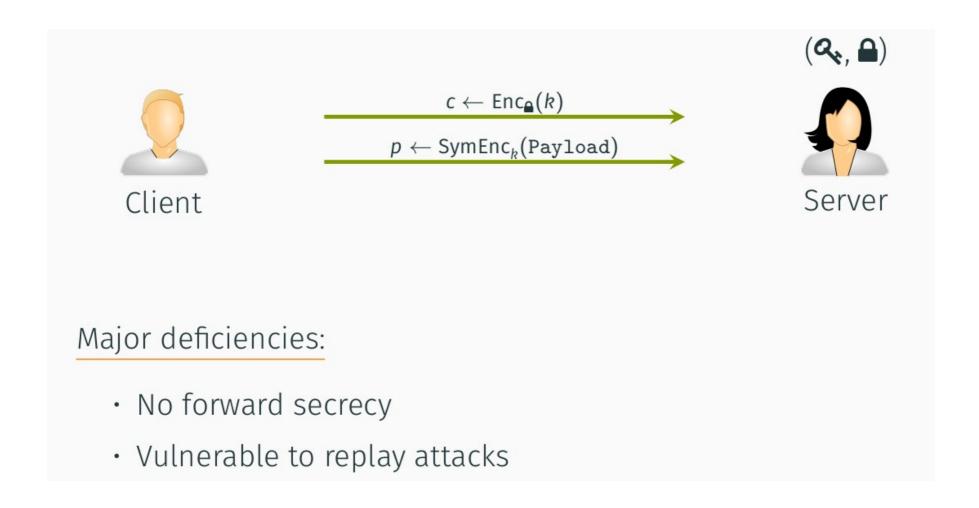


Can we already send encrypted payload with the first message in the second round?

Desired properties:

- Replay protection
- Forward secrecy

Puncturable Encryption: Application fs 0-RTT Key Exchange



Puncturable Encryption

- We are looking at one construction idea
 - Construct a scheme with non-negligible correctness error: does not matter too much for key-exchange
 - E.g., 1 in 1000 sessions fail (can then fallback to 1-RTT)

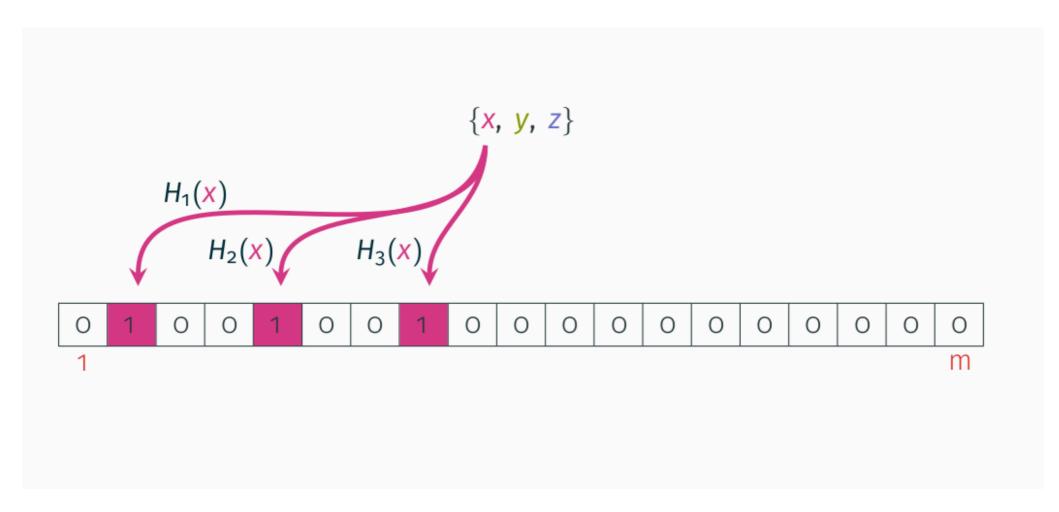
- The most basic construction is called Bloom Filter Encryption (BFE)
 - Bloom Filter: data structure for probabilistic set membership checks

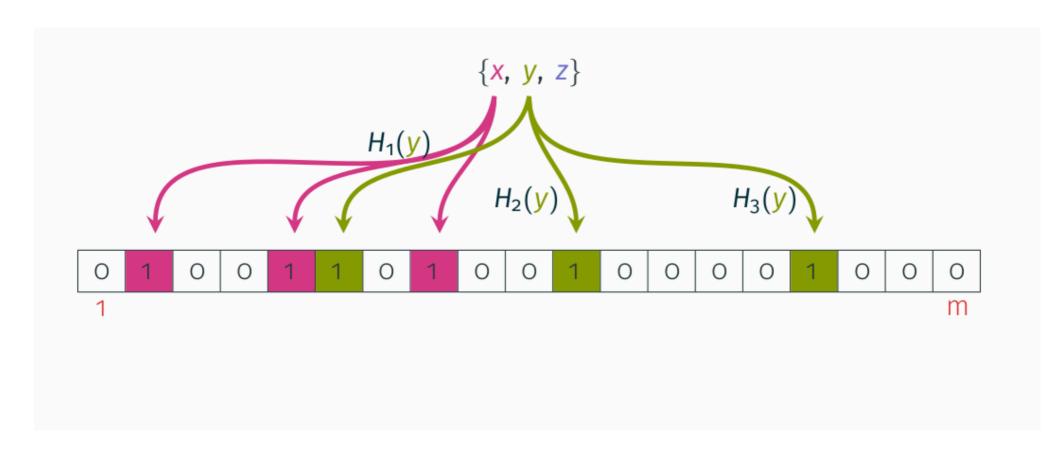
- Initial state $T := o^m$
- k universal hash functions $(H_j)_{j \in [k]}$
- · $H_j: \mathcal{U} \rightarrow [\mathbf{m}]$
- Throughout this talk, let k = 3

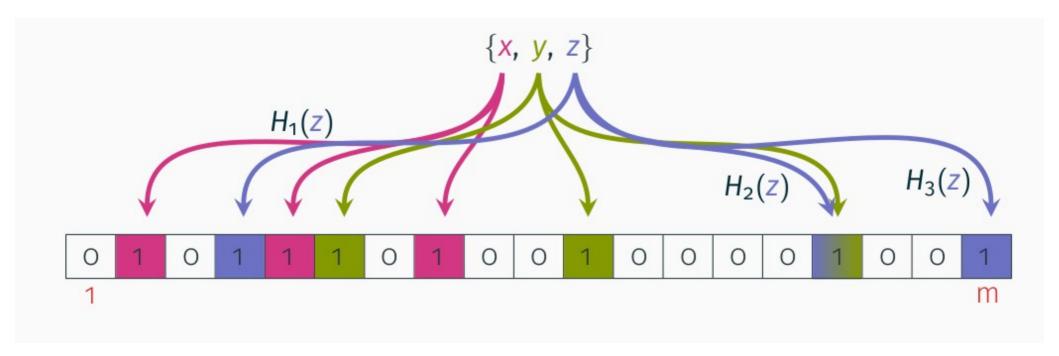
$$\{x, y, z\}$$

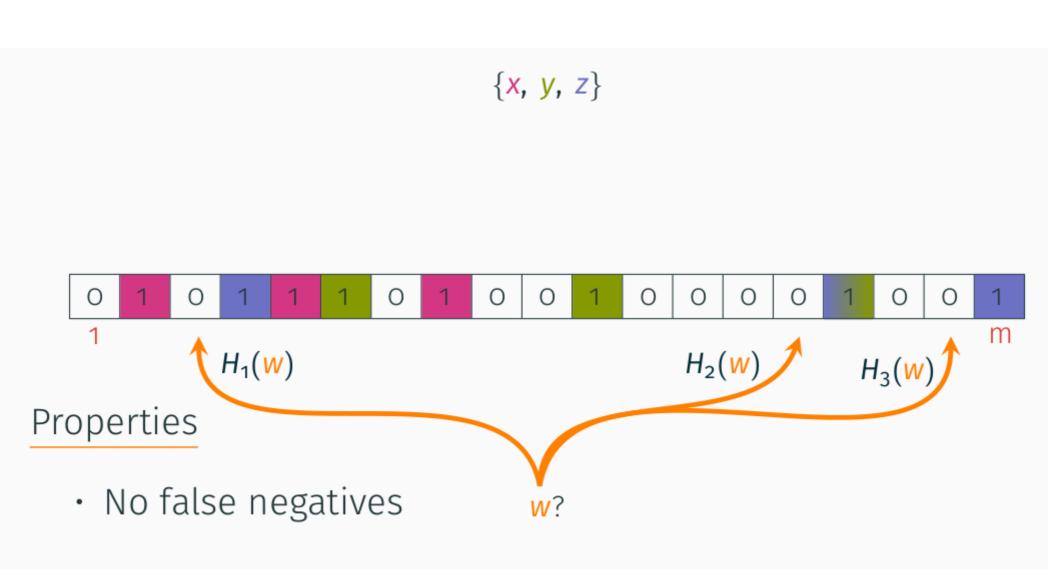
• Initial state $T := o^m$

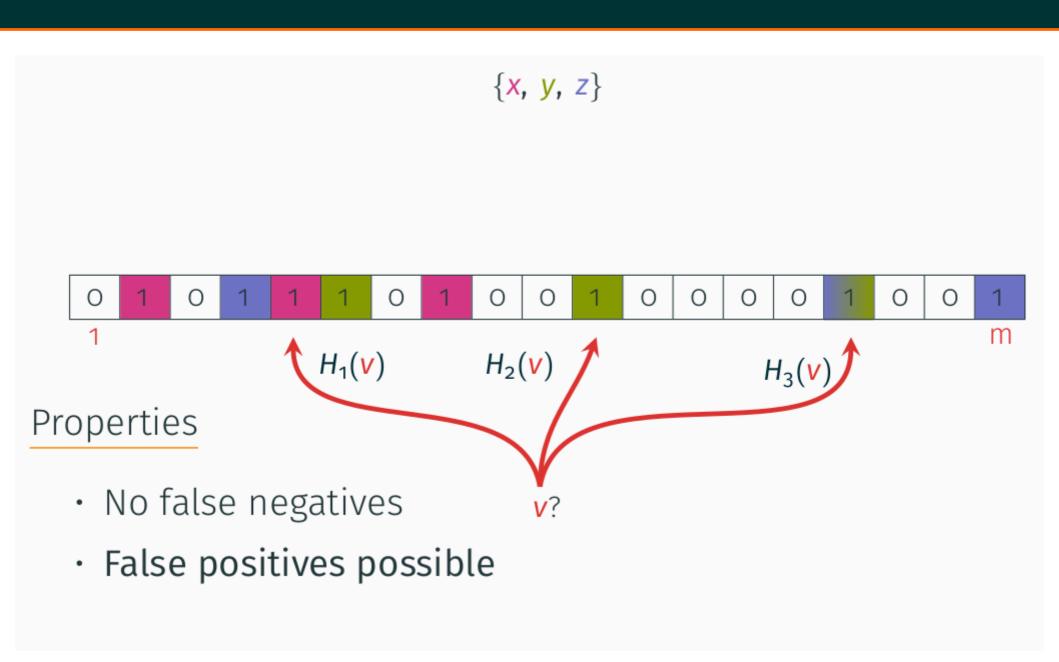
- k universal hash functions $(H_j)_{j \in [k]}$
- $H_j: \mathcal{U} \to [\mathbf{m}]$
- Throughout this talk, let k = 3

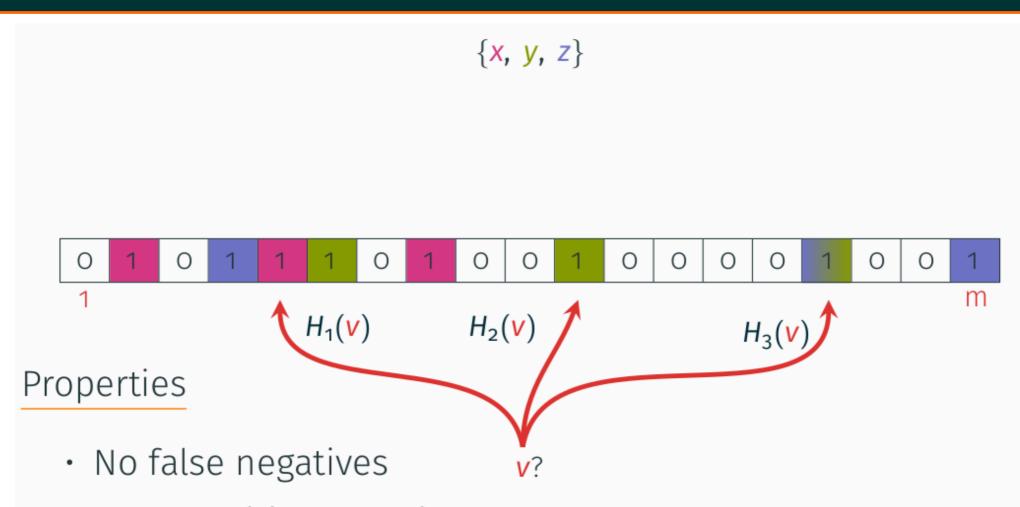








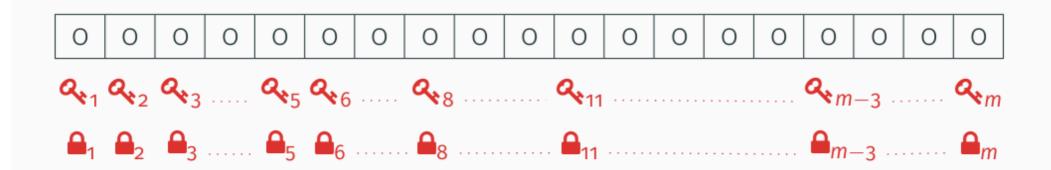




- False positives possible
- Probability determined by k, m, and # inserted elements

KeyGen

· Set up BF

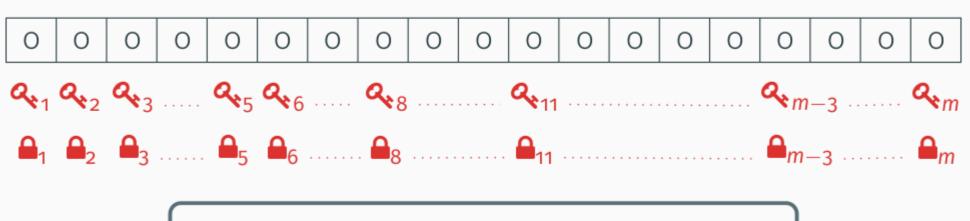


KeyGen

- Set up BF
- Associate key pair to each bit

KeyGen

- · Set up BF
- Associate key pair to each bit
- Compose BFE key pair (ዺ, ≜)



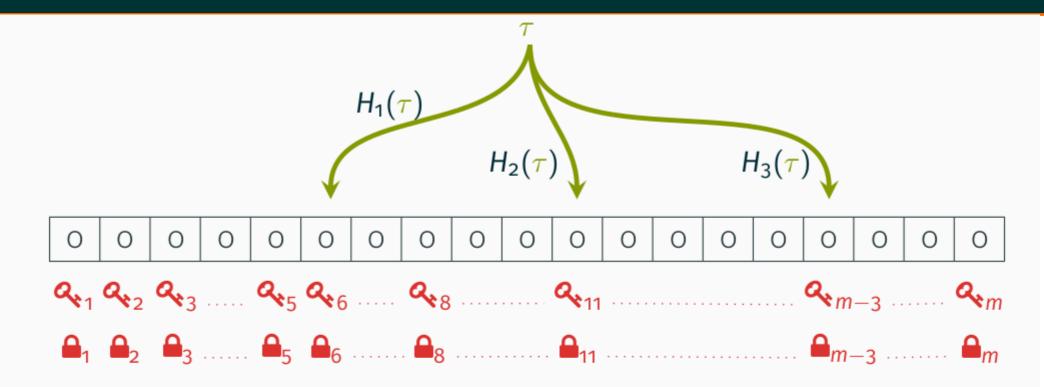
Encrypt message M

• Randomly choose tag au



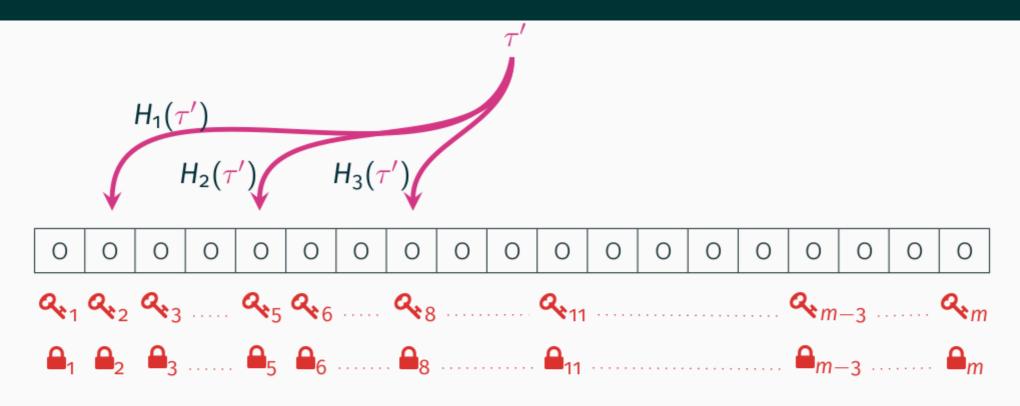
Encrypt message M

- Randomly choose tag au
- Determine indexes from τ



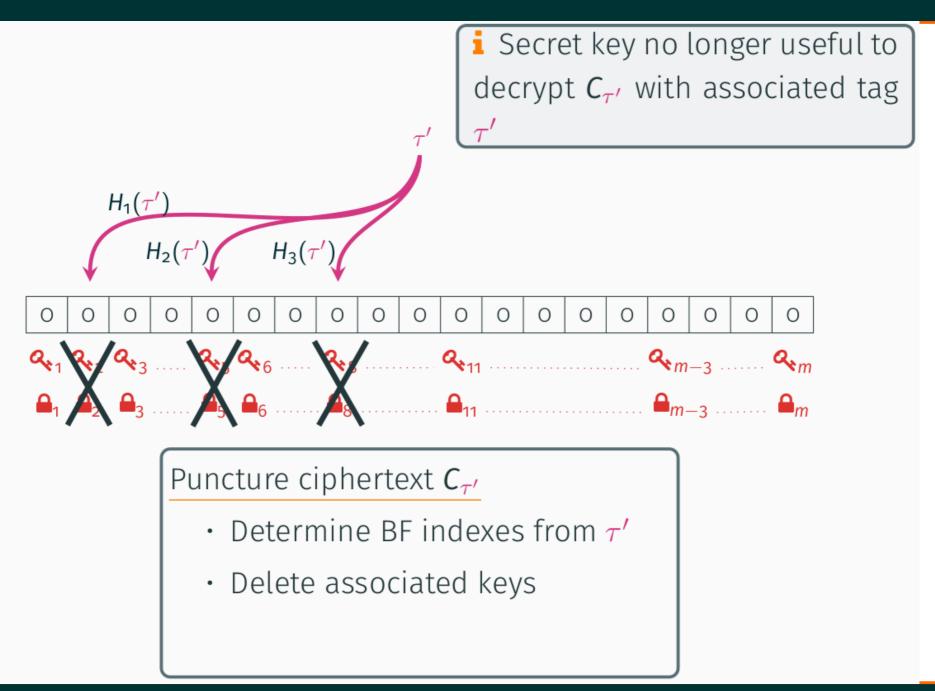
Encrypt message M

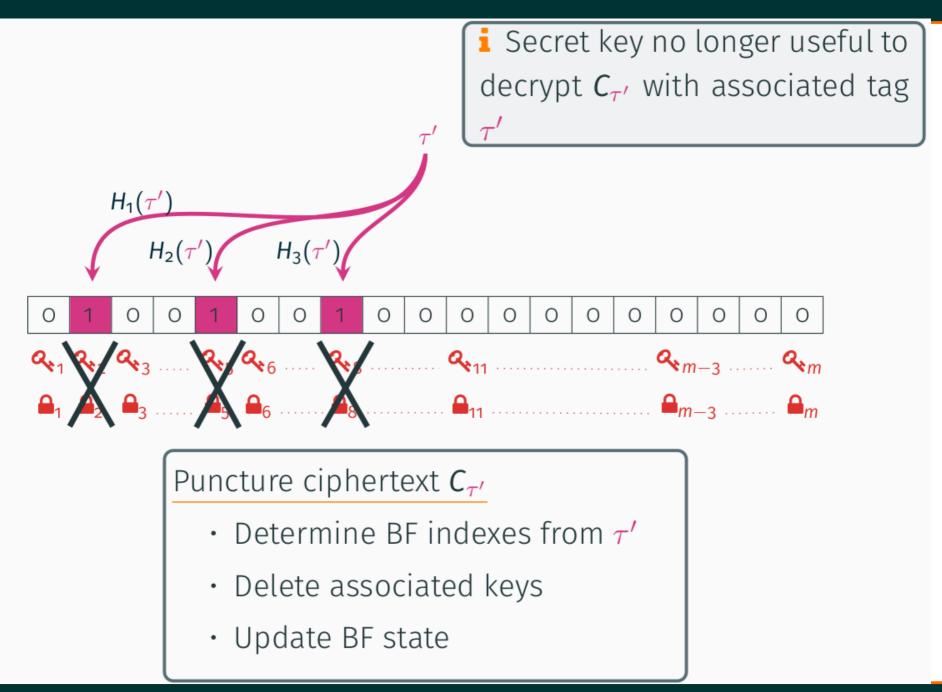
- Randomly choose tag au
- Determine indexes from τ
- $\cdot C_{\tau} \leftarrow \operatorname{Enc}_{\bullet_{6} \vee \bullet_{11} \vee \bullet_{m-3}}(M)$

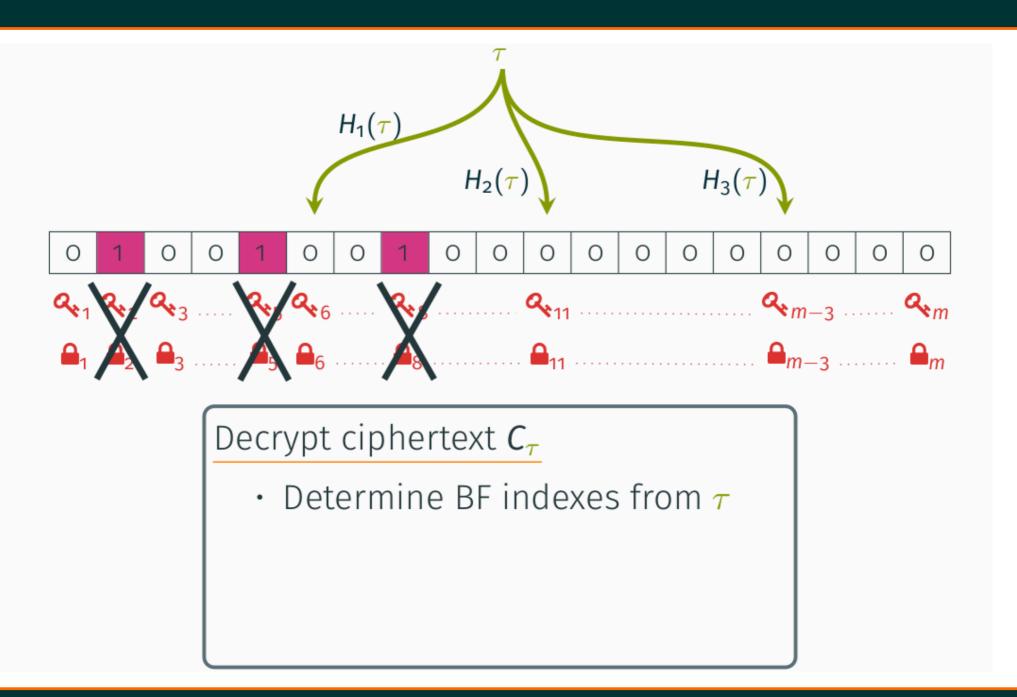


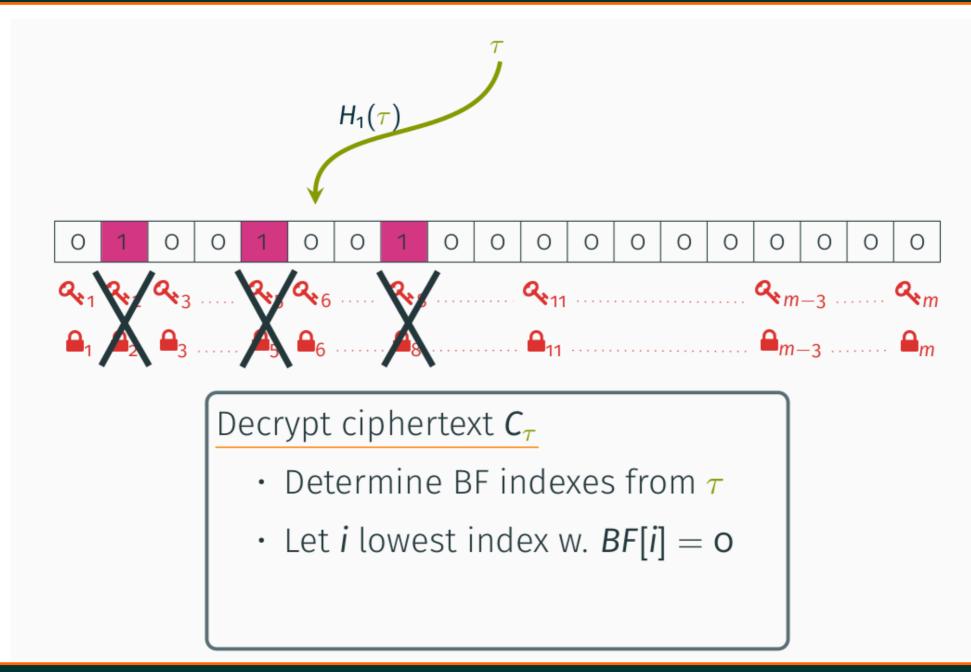
Puncture ciphertext $C_{ au'}$

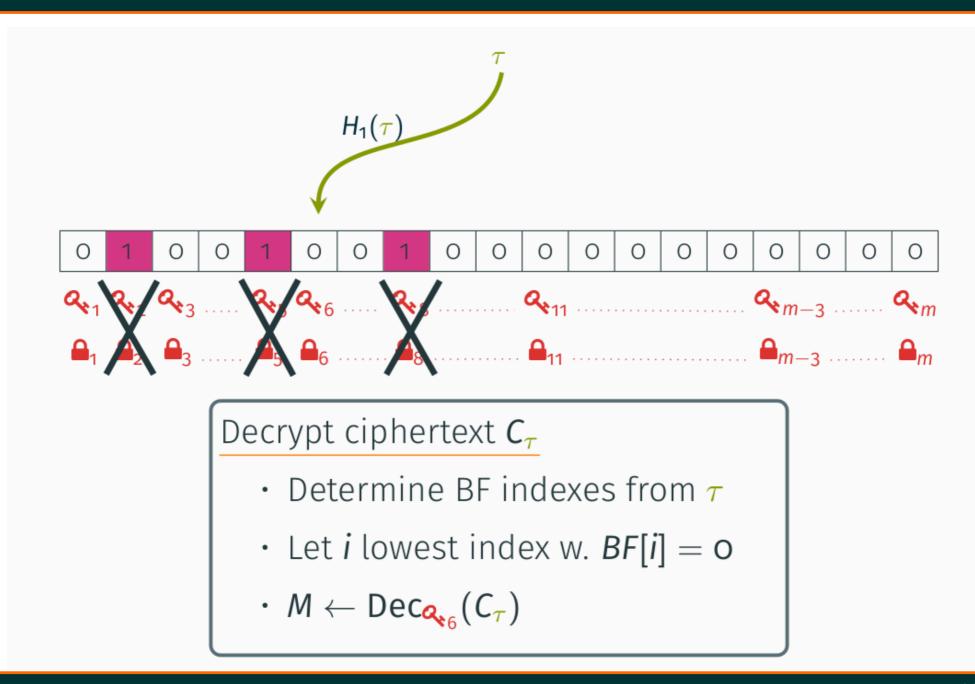
• Determine BF indexes from τ'











- Maximum # of elements in BF: 2²⁰
 - ≈ 2¹² puncturings/day for full year
- False positive probability: 10⁻³
- BF size $m = n \cdot ln p/(ln 2)^2 \approx 2MB$
- # hash functions $k = \lceil m/n \cdot ln \ 2 \rceil = 10$
- Constructions from different primitives
 - Identity-based encryption (IBE), Attribute-based encryption (ABE)
 - Identity-based broadcast encryption (IBBE)

Construction	 	0,	C	Dec	Punc
IBE [Crypto'01]	0(1)	O(m)	O(k)	O(k)	O(k)
ABE [CT-RSA'13, AC'15]	O(m)	$O(m^2)$	0(1)	O(k)	O(k)
IBBE [AC'07] 1	O(k)	O(m)	O(1)	O(k)	O(k)

The End

- Thank you all for participating in the course! It was a lot of fun!
- If you are interested in summer internships/bachelor/master projects please just contact me

Good luck for the final exam!!

