
Daniel Slamanig

Modern Cryptography: Lecture 12
Public Key Encryption II/II

2/27

Organizational

● Where to find the slides and homework?
– https://danielslamanig.info/ModernCrypto18.html

● How to contact me?
– daniel.slamanig@ait.ac.at

● Tutor: Karen Klein
– karen.klein@ist.ac.at

● Official page at TU, Location etc.
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&

courseNr=192062&semester=2018W
● Tutorial, TU site

– https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsr
id=341&courseNumber=192063&courseSemester=2018W

● Exam for the second part: Thursday 31.01.2019 15:00-17:00 (Tutorial slot)

https://danielslamanig.info/ModernCrypto18.html
mailto:daniel.slamanig@ait.ac.at
mailto:karen.klein@ist.ac.at
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&courseNr=192062&semester=2018W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&courseNr=192062&semester=2018W
https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsrid=341&courseNumber=192063&courseSemester=2018W
https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsrid=341&courseNumber=192063&courseSemester=2018W

3/27

Recap: Public Key Encryption

secret key skA

public key pkA

public key pkAInsecure channel

A: pkA

c:=EncpkA(m)

m:=DecskA(c)

4/27

ElGamal Encryption - Intuition

● Take the DH KE protocol and fix “first message” A (together with group
parameters) of Alice as her public key (secret a is her secret key)

● To encrypt to Alice, Bob chooses ephemeral key B, uses K as one-time pad
to encrypt a message M ∈ G and additionally sends B

● Any KE protocol that is secure in the presence of an eavesdropper (Def. 10.1)
yields an IND-CPA secure PKE

5/27

ElGamal Encryption

● Gen(1n): Run (G, q, g) ← G(1n), pick x ←$ Zq compute y := gx and output
(sk, pk) := ((G, q, g, x), (G, q, g, y))

● Enc (m, pk): On input m ∈ G and pk = (G, q, g, y) , pick r ←$ Zq , compute
and output

C := (gr, m · yr)

● Dec (C, sk): On input C = (C1, C2) and sk = (G, q, g, x), compute and
output

m := C2 · (C1x)-1

Correctness: C2 · (C1
x)-1 = m · yr · ((gr)x)-1 = m · yr · (yr)-1 = m · 1 = m

We can also consider (G,q,g) as system parameters pp which are input to Gen and remove them from the keys.
All algorithms then implicit have access to pp. So, many users can generate keys with respect to the same parameters
(as typically the case with elliptic curve cryptography).

6/27

ElGamal Encryption: Security Analysis I/III

This lemma gives us a perfectly secret private-key encryption scheme
with message space G (one-time pad on a different group).
In ElGamal the ciphertext is C := (gr, m · yr) where y = gx is the public key
Using the lemma we construct an alternative ElGamal “encryption
method” where we use a random secret key gz to encrypt
– Here a ciphertext is of the form C := (gr, m · gz)
– The value gz will be unknown to the adversary, i.e., m is information-

theoretically hidden and the adversary can only guess the challenge bit.

We will show that in the IND-CPA game no adversary can detect that
we modify the ElGamal encryption method under the DDH assumption

LEMMA 11.15 Let G be a finite group, and let m ∈ G be arbitrary. Then
choosing uniform k ∈ G and setting k’ := k · m gives the same distribution
for k’ as choosing uniform k’ ∈ G. Put differently, for any g’ ∈ G we have

Pr[k · m = g’] = 1/|G|,
where the probability is taken over uniform choice of k ∈ G.

7/27

ElGamal Encryption: Security Analysis II/III

● We recall the DDH assumption

● We fix some notation
– PubKA EG,EG (n) represents the IND-CPA experiment for ElGamal EG
– PubKA EG,EG ’(n) the experiment for modified ElGamal EG’
– Recall that Pr[PubKA EG,EG (n)=1] denotes the probability that adversary A

wins the game (for ElGamal in this case)

DEFINITION 8.63: We say that the DDH problem is hard relative to G if for
all PPT algorithms A there is a negligible function negl such that

Pr[A(G, q, g, gx , gr , gz) = 1] − Pr[A(G, q, g, gx , gr , gxr) = 1] ≤ negl(n),

where in each case the probabilities are taken over the experiment in
which G(1n) outputs (G, q, g), and then uniform x, r, z ∈ Zq are chosen.

cpa

cpa

cpa

8/27

ElGamal Encryption: Security Analysis III/III
IND-CPA Game with original ElGamal EG IND-CPA Game with modified ElGamal EG’

Pr[PubK
A EG,EG ’(n)=1] = 1/2Pr[PubK

A EG,EG (n)=1]

Pr[BA(G,q,g,gx,gr,gz)=1] = Pr[PubK
A EG,EG ’(n)=1]

Pr[BA(G,q,g,gx,gr,gxr)=1] = Pr[PubK
A EG,EG (n)=1]

negl(n) ≥ |Pr[BA(G,q,g,gx,gr,gz)=1] – Pr[BA(G,q,g,gx,gr,gxr)=1]|

 = |1/2 – Pr[PubK

A EG,EG (n)=1]|

This gives us: Pr[PubK
A EG,EG (n)=1] ≤ 1/2 + negl(n) ■

cpa

Reduction B to DDH cpa

cpa

cpa

cpa

cpa

9/27

ElGamal Encryption: Properties

● Homomorphic
– Given two ciphertexts (C1, C2) = (gr, m · yr) and (C’1, C’2) = (gr’, m’ · yr’) we can compute (C1,

C2) ⊡ (C’1, C’2) as componentwise multiplication

● (C1, C2) ⊡ (C’1, C’2) = (gr · gr’, (m · yr) · (m’ · yr’)) = (gr+r’, (m · m’) · yr+r’)

– Encode message m ∈ Zq in the exponent as gm (“Exponential ElGamal”)

● (C1, C2) ⊡ (C’1, C’2) = (gr · gr’, (gm · yr) · (gm’ · yr’)) = (gr+r’, (gm+m’) · yr+r’)
● Decryption requires computing DLOG! Messages from restricted space

● Perfectly Re-randomizable
– Homomorphic property with encryption of 1: (C’1, C’2) = (gr’, yr’)

● (C1, C2) ⊡ (C’1, C’2) = (gr+r’, m · yr+r’)
● Identically distributed to “fresh” ciphertexts

● Key-private
– Ciphertext does not leak public key (if keys are with respect to same pps)
– Adversary can not tell apart ciphertexts for chosen messages encrypted either under

public key y or y’

10/27

CCA Security

● Like in the private-key (symmetric) setting we will also consider a notion strictly
stronger than IND-CPA security

● IND-CCA security: we give the adversary access to a decryption oracle
– Even more of a concern in the PKE setting: parties may receive ciphertext from

multiple potentially unknown senders
– Adversary intercepts ciphertext from client to server. Say encryption of a symmetric

key (e.g., pre-master secret in TLS) used to secure a connection
● Adversary may send modified versions of the ciphertext to the server to check how

the server reacts when trying to decrypt
● Like with padding-oracles the behaviour of the server may help to recover the original

message (without seeing the decrypted message)
● Huge problem in practice! (will discuss later)

– Auction application. Assume an application where bidders send encrypted bids
● Non-CCA secure schemes are typically malleable (given c change underlying message

from m to e.g., 2m)
● Intercepting an encrypted bid from competitor, can always double the unknown value

11/27

IND-CCA Security

A public-key encryption scheme Π = (Gen, Enc, Dec) has indistinguishable
encryptions under chosen-ciphertext attacks if for all probabilistic
polynomial-time adversaries A there is a negligible function negl s.t.

Pr[PubK
A,EGΠ(n)=1] ≤ ½ + negl(n) .
cca

12/27

IND-CCA Security – Discussion

● Access to oracle Dec’ can be limited
– Non-adaptive access: only before seeing c* (i.e., queries to decryption do not depend

on challenge ciphertext).
● IND-CCA1 security (aka security against “lunch-time attacks”)

– Adaptive access: queries to Dec’ can depend on c*
● IND-CCA2 security (aka “adaptive” security)

● IND-CCA1 is stricly weaker than IND-CCA2
– Any IND-CCA2 scheme is obviously IND-CCA1 secure
– There are schemes that are IND-CCA1 but not IND-CCA2 (e.g., Cramer-Shoup “lite”)

● When we speak of IND-CCA security, we alsways mean adaptive access to the
decryption oracle (i.e., CCA2 security)

13/27

Hierarchy of Security Notions

OW-CPA IND-CPA IND-CCA1 IND-CCA2

increasing strength

Practical encryption applications
(and only schemes satisfying

this notion!)

Cryptographic applications that require homomorphic
properties/re-randomizability

Building block in cryptographic
protocols

Exercise: show reductions between these notions

⇐⇐⇐

14/27

CCA Security – Some Facts

● IND-CCA notion under mutliple encryptions can be shown analogously
to as we have done for IND-CPA security

● Claim 11.7 (PKE for larger messages by blockwise encryption) does not
hold for CCA security. Why?
– Let us wlog assume 2 blocks: Enc’pk (m) := (Encpk(m1), Encpk(m2))

– Receive challenge ciphertext c*=(c1*,c2*) and send c*’= (c2*,c1*) to Dec
oracle?

● As with CPA secure encryption, for longer messages a “hybrid
encryption” approach will be used
– Will formalize “hybrid encryption”
– Generic composition of a key-encapsulation mechanisms (KEM) and a

data-encapsulation mechanism (DEM)
– KEM will be a “lightweight” PKE, DEM a symmetric encryption scheme

15/27

Key-Encapsulation Mechanism: Definition

DEFINITION 11.9 A key-encapsulation mechanism (KEM) is a triple of PPT
algorithms (Gen, Encaps, Decaps) such that:

1. The key-generation algorithm Gen takes as input the security parameter
1n and outputs a pair of keys (pk, sk) (keys have length at least n and n can
be determined from pk).
2. The encapsulation algorithm Encaps takes as input a public key pk and the
secuirty parameter 1n. It outputs a ciphertext c and a key k ∈ {0,1}p(n), where p
is the key length. We write this as (c,k) ← Encapspk(1

n) (or (c,k) ← Encaps(1n,pk)).
3. The deterministic decapsulation algorithm Decaps takes as input a private
key sk and a ciphertext c, and outputs a key k or a special symbol ⊥
denoting failure. We write this as k := Decapssk(c) (or as k := Decaps(sk, c)).

It is required that, except possibly with negligible probability over
(pk, sk) ← Gen(1n), we have that if (c,k) ← Encapspk(1

n), then k := Decapssk(c) .

16/27

Security Definitions for KEMs (IND-CPA)

Define them for IND-CPA and IND-CCA analogoulsy to PKE (CCA game
provides a Decaps* oracle)

A key-encapsulation mechansims Π = (Gen, Enc, Dec) is IND-CPA-secure if
for all PPT adversaries A there is a negligible function negl s.t.

Pr[KEM
A,EGΠ(n)=1] ≤ ½ + negl(n) .
cpa

17/27

IND-CPA/IND-CCA PKE implies IND-CPA/IND-CCA KEM

Given any PKE scheme* Π = (Gen, Enc, Dec) with message space M
construct a KEM Π’ = (Gen’, Encaps, Decaps) as follows:

● Π’.Gen’(1n): Run (pk,sk) ← Π.Gen(1n)
● Π’.Encapspk(1n): Choose k ←$ M, compute c ← Π.Encpk(k) and output (c,k)
● Π’.Decapssk(c): Output Π.Decsk(c)

– * we need to assume that the message space of Π has sufficient
min-entropy (so that keys k are “random enough”)

● Dedicated KEM constructions typically far more efficient!

18/27

Hybrid Encryption from KEM/DEM

● Given a KEM and a DEM (symmetric encryption scheme) we can easily
construct a hybrid encryption scheme

● In practice such schemes are significantly more efficient than pure PKE
schemes
– As soon as the message would require more than one PKE invocation

Encaps
Enc’

k

m

c
c’

(Gen, Encaps, Decaps)

(Gen’, Enc’, Dec’)

KEM scheme

Symmetric encryption scheme (DEM)

19/27

Hybrid Encryption from KEM/DEM: Generic Construction

Let Π = (Gen, Encaps, Decaps) be a KEM with key length n, and let Π’ =
(Gen’ , Enc’ , Dec’) be a private-key encryption (DEM) scheme. We
construct a public-key encryption scheme Πhy = (Genhy , Enchy , Dechy)
as follows:
– Genhy: On input 1n output (pk, sk) ← Gen(1n)
– Enchy: On input a public key pk and a message m ∈ {0, 1}* do:

● Compute (c, k) ← Encapspk(1n)
● Compute c’ ← Enc’k(m)
● Output the ciphertext (c, c’)

– Dechy: on input a private key sk and a ciphertext (c, c’) do:
● Compute k := Decapssk(c)
● Output the message m := Dec’k(c’)

20/27

Hybrid Encryption from KEM/DEM: Security

THEOREM 11.12: If Π is a CPA-secure KEM and Π’ is a private-key encryption
 scheme that has indistinguishable encryptions in the presence of an
eaves dropper, then Πhy is a CPA-secure public-key encryption scheme.

THEOREM 11.14: If Π is a CCA-secure KEM and Π’ is a CCA-secure private-key
encryption scheme, then Πhy is a CCA-secure public-key encryption scheme.
Proof works analogous

Proof idea:

21/27

RSA KEM

● Recall construction for which we have shown IND-CPA security as PKE in
the ROM (i.e., H is modeled as a random oracle)
– Enc(m , pk) := (H(x) m , x⊕ m , x e mod N) for m ∈ {0,1}k and x ←$ ZN*

– Dec((c1,c2), sk) := H(c2d mod N) c⊕ m , x 1

● Clearly, this PKE is not IND-CCA secure
– Take challenge ciphertext (c*1,c*2) and send (c*1 0….1⊕ m , x , c*2) to Dec* oracle

● View the above scheme as a KEM combined with a eav secure private-
key encryption scheme

● We just consider the KEM part of this scheme
– Encapspk(1n): Return (c, k) as (xe mod N, H(x)) for x ←$ ZN*

– Decapssk(c): Return H(cd mod N)

THEOREM 11.38: If the RSA problem is hard relative to GenRSA and H is
modeled as a random oracle, then the above is a CCA-secure KEM.

22/27

RSA KEM – Sketch of Security Proof

Proof idea (similar to last time):
● If the adversary does not query H(x), for the key k*=H(x) in the challenge

ciphertext (c*,k*), the key k* is uniformly random
● To learn information about k*=H(x), adversary has to query H(x). We can

embed an RSA challenge y as c* = y
● Challenge key is hidden information theoretically unless random oracle

queried H on x s.t. y = xe mod N
● If this happens, we have an adversary against the RSA assumption (thus we

can rule out the adversary will query x to H and can only guess).

For CCA security we have to consitently simulate the Decaps* oracle for the
adversary (and we do not know the secret key!)

23/27

RSA KEM – Sketch of Security Proof

Simulate the Decaps* oracle (without the secret key):
● We keep two lists LH and LDec

– We initally put (c*, k) for uniform k into LDec

– We consitently simulate the random oracle and the Decaps* oracle

H(x’):
If (x’, k) ∈ LH for k return k
Else c’ ← x’e mod N
 If (c’, k) ∈ LDec for k return k and LH := LH ∪ (x’, k)
 Else k ←$ {0,1}n, return k and LH := LH ∪ (x’, k)

Decaps(c’):
If (c’, k) ∈ LDec for k return k
Else for each (r’, k) ∈ LH check r’e = c’ mod N
 If so return k
 Else k ←$ {0,1}n, return k and LDec := LDec ∪ (c’, k)

For every hash query
proactively compute the
corresponding ciphertext
in the forward direction

For every decapsulation we
check if we have computed
the corresponding key
Otherwise we sample a
new random key and
update our key list

The simulation is perfect from the view of the adversary

24/27

KEM under DDH/CDH/gapDH

● Analogously to the RSA KEM we can define KEMs in the DL setting
● IND-CPA secure KEM

– Encaps: on input a public key pk = (G, q, g, y=gx, H) choose a uniform r ∈ Zq and
output the ciphertext gr and the key H(yr).

– Decaps: on input a private key sk = (G, q, g, x) and a ciphertext c, output the key
H(cx).

– Depending on the choice of H we can show
● IND-CPA security under the DDH assumption if H is a “good” key-derivation

function
● IND-CPA security under the CDH assumption if H is modeled as a random oracle

● IND-CCA secure KEM
– If we model H as a random oracle under the gapDH assumption (CDH holds

even if we allow a DDH oracle)
– Standardized and often used in practice as DHIES/ECIES

25/27

CCA (In-)Security of ElGamal

● We have shown IND-CPA security of ElGamal under DDH (in prime
order groups)

● What about IND-CCA1 (i.e., non-adpative chosen ciphertext) security?
– Can be shown under a tailored interactive complexity assumption
– There are ElGamal variants, e.g., Cramer-Shoup “lite”, where IND-CCA1

security can be shown under DDH
● What about IND-CCA2 (i.e., adaptive chosen ciphertext) security?

– Can not hold due to the homomorphic property!
– How to construct an attacker?

● Re-randomize the challenge ciphertext c* and send it to Dec* oracle

26/27

CCA Insecurity in Practice

Bleichenbacher attack
on RSA PKCS#1 v1.5 encryption
Using some facts of RSA
– Having c = me mod N; sending c’ := se·c mod N for random

s ←$ ZN* to Dec

– Recovering m: m’ = (se·c)d mod N = s·m mod N; m := s-1·m’ mod N
– m is specifically padded (PKCS#1 v1.5 - 0x00||0x02||R||0x00||m) and the Dec

oracle only needs to return a bit (whether padding is correct – a padding oracle)

2017

2018

2016

Web Server Attacker

target c

...

s1
e·c mod N

sn
e·c mod N

unknown dDec correct?

Attacker can test if 16 MSBs of plaintext are 02

yes/no
yes/no

...
If i’th answer is yes, we know that si·m mod N is in a specific range (we know it starts with 0x0002)
Repeat this blinding step to further narrow down the range – until one candidate, i.e., m, is left
For N of 1024 bits the original attack requires ~ 106 tries (can be significantly reduced)

27/27

IND-CCA Secure Schemes

● We have seen several variants of “hybrid” PKE schemes that are CCA2
secure
– RSA-KEM used in combination with a CCA-secure DEM (ROM)
– DHIES/ECIES (ROM)

● We know that a CCA-secure KEM is sufficient to obtain a CCA-secure PKE
● There are various generic conversions for weakly secure PKEs

– Fujisaki-Okamoto (FO): starts from OW-CPA secure PKE (ROM)
– REACT, GEM: starts from one-way against plaintext checking attacks (OW-PCA)

secure PKE (ROM)
– Naor-Yung (“twin encryption”): IND-CPA secure PKE + non-interactive zero-

knowledge proofs (w/o ROM)
● Any CPA secure identity-based encryption scheme + strongly secure one-

time signatures (w/o ROM)
● Cramer-Shoup: From hash-proof systems (w/o ROM)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

