
Daniel Slamanig

Modern Cryptography: Lecture 11
Public Key Encryption I/II

2/31

Organizational

● Where to find the slides and homework?
– https://danielslamanig.info/ModernCrypto18.html

● How to contact me?
– daniel.slamanig@ait.ac.at

● Tutor: Karen Klein
– karen.klein@ist.ac.at

● Official page at TU, Location etc.
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&

courseNr=192062&semester=2018W
● Tutorial, TU site

– https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsr
id=341&courseNumber=192063&courseSemester=2018W

● Exam for the second part: Thursday 31.01.2019 15:00-17:00 (Tutorial slot)

https://danielslamanig.info/ModernCrypto18.html
mailto:daniel.slamanig@ait.ac.at
mailto:karen.klein@ist.ac.at
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&courseNr=192062&semester=2018W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&courseNr=192062&semester=2018W
https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsrid=341&courseNumber=192063&courseSemester=2018W
https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsrid=341&courseNumber=192063&courseSemester=2018W

3/31

Overview Public Key Encryption

secret key skA

public key pkA

public key pkAInsecure channel

A: pkA

c:=EncpkA(m)

m:=DecskA(c)

4/31

Overview Public Key Encryption

● Now every user has a secret key sk and a
public key pk (secret key sk cannot be efficiently
computed from pk)

● Reduced effort for key management; no shared
secret!

● Authentic copy of pk can be made public
● How to guarantee that public keys are authentic in practice?

– Public keys look “random” and no relation to identiy of the holder exists - so
binding must be done explicitly

– Let some trusted entity (CA) explicitly “certify” the connection between ID and
pk

– Later in the course we will then see an alternative approach
● public key = identity (identity-based encryption)
● But setting is different

5/31

Certifying Public Keys

● Demonstrate that you
hold sk for pk
– Proof of Possession (PoP)

● CA certifies pk||ID
– ID: mail, domain, etc.

● CA is trusted to operate
properly (PKI model)
– CA is “self-certified”

● Alternative models
– Web of trust (e.g., PGP)
– Decentralized PKI (DPKI)

● “Self Sovereign Identity” (e.g., Sovrin)

Certificate Authority (CA)

(sk, pk)
pk, Lisa, PoP

Sig(pk||Lisa)

6/31

Overview Public Key Encryption

7/31

Public Key Encryption: Definition

DEFINITION 11.1 A public-key encryption scheme is a triple of PPT
algorithms (Gen, Enc, Dec) such that:

1. The key-generation algorithm Gen takes as input the security parameter
1n and outputs a pair of keys (pk, sk) (the message space M is implicit in
the public key).
2. The encryption algorithm Enc takes as input a public key pk and a mes-
sage m from some message space. It outputs a ciphertext c, and we write
this as c ← Encpk(m). (We often also write c ← Enc(m, pk))
3. The deterministic decryption algorithm Dec takes as input a private key
sk and a ciphertext c, and outputs a message m or a special symbol ⊥
denoting failure. We write this as m := Decsk(c). (We often also write
m := Dec(c, sk)).

It is required that, except possibly with negligible probability over
(pk, sk) ← Gen(1n), we have

Decsk(Encpk(m)) = m
for any message m∈M.

8/31

Some Remarks on the Definition

● The encryption algorithm may be deterministic or probabilistic
● The decryption algorithm may be perfectly correct (never fails) or may

fail with negligible probability

● Every instance has an associated message space M (which we assume
to be implicitly defined when seeing the public key)
– In the simplest case we encrypt bits

● it is easy to extend such a scheme to bitstrings {0,1}k
– Usually M represents some algebraic structure which does not contain

all bitstrings of some fixed size
● typically we have efficient ways to injectively encode messages from

{0,1}k into elements from M

9/31

Constructing Public Key Encryption

● Need some hard problems to rely on!

● Will look into constructions from factoring-related problems
– RSA in particular

● Will look at constructions from DL-related problems (next lecture)
– We already have discussed DDH and CDH

10/31

Factoring

● Every integer N>1 can be uniquely (up to ordering) written as N=∏i pi
ei

– pi are distinct primes and ei≥1 for all i
● Given a factorization it is easy to compute the composite N

● Computing the factorization is hard for certain forms of composites
– Hardest if numbers to factor have only large prime factors

● A trivial algorithm to find the factors of any given N is trival division
– Inefficient as it represents an exponential-time algorithm

11/31

Factoring

● Two types of algorithms
– Generic ones: apply to arbitrary N
– Specific ones: tailored to work for N of some specific form

● Specific algorithm
– Pollard’s p− 1 method: Factor N=pq when p-1 has small prime factors

● Choosing uniform n-bit primes p,q, small prime factors of p-1 and q-1
are very unlikely

● General purpose algorithms
– Pollard’s rho method: O(N1/4 · polylog(q)) runtime (still exponential)
– Fastest general purpose factoring algorithm is the general number field

sieve
● Subexponential with runtime 2O((log N)1/3 ·(log log N)2/3)

12/31

Factoring

● Let GenModulus be a polynomial-time algorithm that on input 1n outputs
(N,p,q) where N=pq and p,q are n-bit primes.

Factor
A,GenModulus (n)

DEFINITION 8.45: Factoring is hard relative to GenModulus if for all PPT
algorithms A there exists a negligible function such that

Pr[Factoring
A,GenModulus(n)=1] ≤ negl(n) .

13/31

RSA Assumption

● Let GenRSA be a polynomial-time algorithm that on input 1n outputs (N,e,d)
where N=pq and p,q are n-bit primes and e,d>0 are integers s.t. gcd(e,φ(N))=1
and ed = 1 mod φ(N).

RSA-Inv
A,GenRSA (n)

DEFINITION 8.46: The RSA problem is hard relative to GenRSA if for all PPT
algorithms A there exists a negligible function such that

Pr[RSA-Inv
A,GenRSA(n)=1] ≤ negl(n) .

14/31

One-Way Permutation (OWP)

● DEFINITION 8.75: A triple Π = (Gen, Samp, f) of PPT algorithms is a family of
permutations if the following hold:
– The parameter-generation algorithm Gen, on input 1n , outputs parameters I with |I| ≥ n.

Each value of I defines a set DI that constitutes the domain and range of a permutation
(i.e., bijection) fI : DI → DI.

– The sampling algorithm Samp, on input I, outputs a uniformly distributed element of DI.

– The deterministic evaluation algorithm f, on input I and x ∈ DI , outputs an element y ∈
DI. We write this as y := fI(x).

Invert
A,Π (n)

DEFINITION 8.76: The family of permutations Π = (Gen, Samp, f) is one-way
if for all PPT algorithms A there exists a negligible function negl such that

Pr[Invert
A,Π(n)=1] ≤ negl(n) .

15/31

Trapdoor One-Way Permutation

● DEFINITION 13.1: A triple Π = (Gen, Samp, f, Inv) of PPT algorithms is a family of
trapdoor permutations if the following hold:
– The parameter-generation algorithm Gen, on input 1n , outputs parameters (I, td)

with |I| ≥ n. Each value of I defines a set DI that constitutes the domain and range
of a permutation (i.e., bijection) fI : DI → DI.

– Let Gen’ be Gen that only outputs I. Then, (Gen’,Samp,f) is a family of
OWPs.

– Let (I, td) be the output of Gen(1n). The deterministic inverting algorithm Inv, on
input td and y ∈ DI , outputs an element x ∈ DI. We write this as x := Invtd(y). We
require that with all but negl. probability over (I, td) output by Gen(1n) and uniform
choice of x ∈ DI, we have

Invtd(fI(x))=x.

16/31

One-Way Permutation – Candidates

● RSA Assumption
– Is it a OWP? Yes, we assume.

● Best currently known way to break RSA assumption is to factor N and then

compute e’th roots mod p and q and use CRT to recover the final result
– RSA Assumption implies Factoring

● Do we need to factor?
– Computing e’th roots modulo N yields a facotring algorithm? Unknown for

e ≥ 3.
– Not known to be equivalent to factoring

● Equivalence known for square roots!

– Not a special case of RSA (2 not coprime to φ(N))
– Rabin cryptosystem (not popular in practice)

17/31

Textbook RSA Encryption

● KeyGen(1n): Pick two random n-bit primes p,q, set N = pq, pick e s.t.
gcd(e ,φ(N)) = 1, compute d := e−1 mod φ(N) output (sk , pk) := ((d , N),
(e ,N))

● Enc (m, pk): On input m ∈ ZN and pk = (e , N) , compute and output

c := me mod N

● Dec (c, sk): On input c an d sk = (d , N) , compute and output

m := cd mod N

Proof of correctness of RSA will be done as a HW.

We have for all m ∈ ZN that m = (me)d mod N

18/31

OW-CPA Security

Encpk(·)

A public-key encryption scheme Π = (Gen, Enc, Dec) has one-way
encryptions in the presence of an eavesdropper if for all PPT
adversaries A there is a negligible function negl s.t.

Pr[PubK
A,Π(n)=1] ≤ negl(n) .

ow-cpa

19/31

Security of Textbook RSA

● One-way security (OW-CPA) under RSA Assumption
– Adversary gets public key and encryption of a random message
– Adversary needs to output the message

● Very weak security guarantees
– Guarantees only for uniformly random messages
– Adversary has to reconstruct entire message

● Interesting property: homomorphic PKE
– Given two ciphertexts c1 and c2 under same public key, we can operate on the

underlying plaintexts without prior decryption
● c1 = m1e mod N, c2 = m2e mod N: c1c2 = (m1m2)e mod N

– Problem (no CCA secuirty – see next lecture), but also interesting feature (if at
least IND-CPA secure)

20/31

IND-CPA Security

A public-key encryption scheme Π = (Gen, Enc, Dec) has indistinguishable
encryptions in the presence of an eavesdropper if for all probabilistic
polynomial-time adversaries A there is a negligible function negl s.t.

Pr[PubK
A,Π(n)=1] ≤ ½ + negl(n) .
eav

Encpk(·)

21/31

Some Observations

PROPOSITION 11.3 If a public-key encryption scheme has indistinguish-
able encryptions in the presence of an eavesdropper, it is IND-CPA-secure.

THEOREM 11.4 No deterministic public-key encryption scheme is IND-CPA-
secure.

THEOREM: No public-key encryption scheme can be perfectly secret.

Encpk(·)

Why?

Analogous for one-wayness

22/31

Multiple Encryptions

● In practice we want to use the same pk to encrypt multiple messages

THEOREM 11.6 If a public-key encryption scheme Π is IND-CPA-secure, then
it also has indistinguishable multiple encryptions.

23/31

Proof Idea

● Let us fix a polynomial bound t=poly(n) on the queries to LoR
● We now define a sequence of “intermediate experiments”

– Let us start in an experiment where LoR has bit b=0
● Adversary submits ((m1,0,m1,1), …, (mt,0,mt,1)) and LoR always return

encryptions of mi,0
● Adversary sees (Epk(m1,0), …, Epk(mt,0))

– Let the i’th experiment change the first i positions in the responses to
(Epk(m1,1), …, Epk(mi,1))

– After t steps we end up with LoR replying (Epk(m1,1), …, Epk(mt,1)) and thus are in
the experiment where LoR has bit b=1

● If the probability of distuinguishing the first and the last experiment is negligble,
we have proven our claim

● Formally, we use a hybrid argument

(Epk(m1,0), …, Epk(mt,0)) (Epk(m1,1), …, Epk(mt,0))≈ (Epk(m1,1), …, Epk(mt,0))≈ ≈ (Epk(m1,1), …, Epk(mt,1))≈...

Reduction to IND-CPA Reduction to IND-CPA
...

24/31

Arbitrary Long Messages

● We can use this fact to construct from any PKE Π = (Gen, Enc, Dec)
another PKE Π’ = (Gen, Enc’, Dec’).

● Assume that Π encrypts messages from {0,1}m, then we can construct a
scheme for messages of length {0,1}m·k for any k ∈ N

● Encryption simply looks as follows and decryption works the obvious
way:
– Enc’pk (m) := Encpk(m1), . . . , Encpk(mk)

CLAIM 11.7 Let Π and Π’ be as above. If Π is IND-CPA-secure, then so is Π’.

25/31

Arbitrary Long Messages in Practice

● The previous method is rather inefficient
● In practice so called “hybrid encryption” is used

– Formal discussion after the holidays via the KEM/DEM paradigm

Enc
Enc’

pk

k
m

c
c’

(KGen, Enc, Dec)

(KGen’, Enc’, Dec’)

Public key encryption scheme

Symmetric encryption scheme

26/31

Random Oracle Model (ROM)

Mihir Bellare, Phillip Rogawayx

H(x)

Truly random function H: {0,1}* → {0,1}n

● Function H that can be accessed in a black-box way
– Answers consistently for values x already seen
– For new values x, choose random n bit string as answer

● Do they exist?
– NO! But let us assume cryptographic hash

functions behave “approximately” like ROs

Look up, throw dice, write down,….

27/31

Random Oracle Model (ROM)

Mihir Bellare, Phillip Rogaway

● Why ROM?
– Allows efficient constructions of cryptographic

primitives with “provable security” guarantees
– The secuirty proofs are then in the ROM
– Efficient signature and encryption schemes (RSA-OAEP,

RSA-PSS, etc.)

● How are they used in security proofs?
– Sample a random H at the beginning of an experiment
– Output of ROM fully hidden unless queried, i.e., H(m||r) for r a large random string
– Typically we assume that the reduction can “program” the random oracle, i.e., can

choose the answers to the oracle calls
● This is easily possible as all the answers are independent
● Can embed information usable to the reduction in oracle answers (we will see examples)

28/31

Criticism of the ROM

● Often considered as a “heuristic” argument for security instead of a
real proof, as ROM is a very strong idealization

● There are schemes that can be shown secure in the ROM, but insecure
when ROM is replaced with any real hash function
– Though, this example is very artificial
– No realistic example of this type known

● Proofs in the ROM for practical constructions appear to be very robust!

29/31

RSA Encryption in the ROM (A hybrid encryption scheme)

● Let H: ZN → {0,1}k be a hash function modeled as a random oracle
● Let RSA encryption and decryption be as follows:

– Enc(m , pk) := (H(x) m , x⊕ m , x e mod N) for m ∈ {0,1}k and x ←$ ZN*

– Dec((c1,c2), sk) := H(c2d mod N) c⊕ m , x 1

CLAIM: The above construction is CPA-secure under the RSA assumption in
the ROM.

Proof idea:
● To obtain information about m from (c1,c2) one has to learn information about H(x)
● If the adversary does not query H(x), then challenge ciphertext is independent from mb

● To learn information about H(x), adversary has to query it. We can embed RSA challenge y as
c* = (r, y) with r uniformly random

● Challenge ciphertext is hidden information theoretically unless random oracle queried on x
s.t. y = xe mod N

● If this happens, we have an adversary against the RSA assumption (thus we can rule out, that
the adversary queries x to H).

30/31

Standardized Padded Variants of RSA

● Use of textbook RSA on preprocessed messages
● RSA-PKCS# 1 v1.5 (should not be used!!)*

– “Padded RSA”: Basically, encrypt m’:=m||r with random r
● PKCS(m, r) = 0x00||0x02||r||0x00||m

– No proof of security for assumed CPA secure version known
– Definitely no CCA security (see next lecture)

● RSA-OAEP (Optimal Asymmetric Encryption Padding)
– More complex preprocessing
– Two-round Feistel network with G and H as

round functions
● Invertible!

– Proof of IND-CCA security in the ROM; thus also
IND-CPA secure

*Matthew Green: “PKCS#1v1.5 is awesome — if you’re teaching a class on how to attack cryptographic protocols. In
all other circumstances it sucks.”

31/31

RSA Implementation (Pitfalls)

● Small public exponents, i.e., e=3
– Efficient encryption (only two multiplications)
– Various attack scenarios known (to reconstruct the message)

● If the same message is encrypted under at least 3 different public keys
● If short messsages are encrypted (and no modular reduction required)

● Reasonable choice of public exponent: e=65537
– Avoids low-exponent attacks and reasonable fast: 65537 = 216+1

● Private exponents must not be too small
– Brute force attacks
– Even if d≈N1/4 (Wiener, improved by Boneh & Durfee) attacks are known

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

