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Modern Cryptography: Lecture 11
Public Key Encryption I/II 
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Organizational

● Where to find the slides and homework?
– https://danielslamanig.info/ModernCrypto18.html

● How to contact me?
– daniel.slamanig@ait.ac.at

● Tutor: Karen Klein
– karen.klein@ist.ac.at

● Official page at TU, Location etc.
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&

courseNr=192062&semester=2018W
● Tutorial, TU site

– https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsr
id=341&courseNumber=192063&courseSemester=2018W

● Exam for the second part: Thursday 31.01.2019 15:00-17:00 (Tutorial slot)

https://danielslamanig.info/ModernCrypto18.html
mailto:daniel.slamanig@ait.ac.at
mailto:karen.klein@ist.ac.at
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&courseNr=192062&semester=2018W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&courseNr=192062&semester=2018W
https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsrid=341&courseNumber=192063&courseSemester=2018W
https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsrid=341&courseNumber=192063&courseSemester=2018W
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Overview Public Key Encryption

secret key skA

public key pkA

public key pkAInsecure channel

A: pkA

c:=EncpkA(m)

m:=DecskA(c)
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Overview Public Key Encryption

● Now every user has a secret key sk and a 
public key pk (secret key sk cannot be efficiently 
computed from pk)

● Reduced effort for key management; no shared
secret!

● Authentic copy of pk can be made public 
● How to guarantee that public keys are authentic in practice? 

– Public keys look “random” and no relation to identiy of the holder exists - so 
binding must be done explicitly

– Let some trusted entity (CA) explicitly  “certify” the connection between ID and 
pk 

– Later in the course we will then see an alternative approach
● public key = identity (identity-based encryption)
● But setting is different
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Certifying Public Keys

● Demonstrate that you 
hold sk for pk 
– Proof of Possession (PoP)

● CA certifies pk||ID
– ID: mail, domain, etc.

● CA is trusted to operate 
properly (PKI model)
– CA is “self-certified”

● Alternative models
– Web of trust (e.g., PGP)
– Decentralized PKI (DPKI)

● “Self Sovereign Identity” (e.g., Sovrin) 

Certificate Authority (CA)

(sk, pk)
pk, Lisa, PoP

Sig(pk||Lisa)
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Overview Public Key Encryption
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Public Key Encryption: Definition

DEFINITION 11.1 A public-key encryption scheme is a triple of PPT 
algorithms (Gen, Enc, Dec) such that:

1. The key-generation algorithm Gen takes as input the security parameter
1n and outputs a pair of keys (pk, sk) (the message space M is implicit in 
the public key).  
2. The encryption algorithm Enc takes as input a public key pk and a mes-
sage m from some message space. It outputs a ciphertext c, and we write 
this as c ← Encpk(m). (We often also write c ← Enc(m, pk))
3. The deterministic decryption algorithm Dec takes as input a private key
sk and a ciphertext c, and outputs a message m or a special symbol ⊥
denoting failure. We write this as m := Decsk(c). (We often also write 
m := Dec(c, sk)). 

It is required that, except possibly with negligible probability over 
(pk, sk) ← Gen(1n), we have 

Decsk(Encpk(m)) = m 
for any message m∈M.
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Some Remarks on the Definition

● The encryption algorithm may be deterministic or probabilistic
● The decryption algorithm may be perfectly correct (never fails) or may 

fail with negligible probability

● Every instance has an associated message space M (which we assume 
to be implicitly defined when seeing the public key)
– In the simplest case we encrypt bits

● it is easy to extend such a scheme to bitstrings {0,1}k 
– Usually M represents some algebraic structure which does not contain 

all bitstrings of some fixed size
● typically we have efficient ways to injectively encode messages from 

{0,1}k into elements from M 
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Constructing Public Key Encryption

● Need some hard problems to rely on! 

● Will look into constructions from factoring-related problems
– RSA in particular

● Will look at constructions from DL-related problems (next lecture)
– We already have discussed DDH and CDH 
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Factoring

● Every integer N>1 can be uniquely (up to ordering) written as N=∏i pi
ei

– pi are distinct primes and ei≥1 for all i 
● Given a factorization it is easy to compute the composite N

● Computing the factorization is hard for certain forms of composites
– Hardest if numbers to factor have only large prime factors

● A trivial algorithm to find the factors of any given N is trival division
– Inefficient as it represents an exponential-time algorithm
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Factoring

● Two types of algorithms
– Generic ones: apply to arbitrary N
– Specific ones: tailored to work for N of some specific form

● Specific algorithm 
– Pollard’s p− 1 method: Factor N=pq when p-1 has small prime factors

● Choosing uniform n-bit primes p,q, small prime factors of p-1 and q-1 
are very unlikely

● General purpose algorithms 
– Pollard’s rho method: O(N1/4 · polylog(q)) runtime (still exponential)
– Fastest general purpose factoring algorithm is the general number field 

sieve
● Subexponential with runtime 2O((log N)1/3 ·(log log N)2/3) 
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Factoring

● Let GenModulus be a polynomial-time algorithm that on input 1n outputs 
(N,p,q) where N=pq and p,q are n-bit primes.

Factor
A,GenModulus (n)

DEFINITION 8.45: Factoring is hard relative to GenModulus if for all PPT 
algorithms A there exists a negligible function such that

Pr[Factoring
A,GenModulus(n)=1]  ≤ negl(n) .  
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RSA Assumption

● Let GenRSA be a polynomial-time algorithm that on input 1n outputs (N,e,d) 
where N=pq and p,q are n-bit primes and e,d>0 are integers s.t. gcd(e,φ(N))=1 
and ed = 1 mod φ(N).

RSA-Inv
A,GenRSA (n)

DEFINITION 8.46: The RSA problem is hard relative to GenRSA if for all PPT 
algorithms A there exists a negligible function such that

Pr[RSA-Inv
A,GenRSA(n)=1]  ≤ negl(n) .  
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One-Way Permutation (OWP)

● DEFINITION 8.75: A triple Π = (Gen, Samp, f) of PPT algorithms is a family of 
permutations if the following hold:
– The parameter-generation algorithm Gen, on input 1n , outputs parameters I with |I| ≥ n. 

Each value of I defines a set DI that constitutes the domain and range of a permutation 
(i.e., bijection) fI : DI → DI.

– The sampling algorithm Samp, on input I, outputs a uniformly distributed element of DI.

– The deterministic evaluation algorithm f, on input I and x ∈ DI , outputs an element y ∈ 
DI. We write this as y := fI(x).

Invert
A,Π (n)

DEFINITION 8.76: The family of permutations Π = (Gen, Samp, f) is one-way 
if for all PPT algorithms A there exists a negligible function negl such that

Pr[Invert
A,Π(n)=1]  ≤ negl(n) .  
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Trapdoor One-Way Permutation

● DEFINITION 13.1: A triple Π = (Gen, Samp, f, Inv) of PPT algorithms is a family of 
trapdoor permutations if the following hold:
– The parameter-generation algorithm Gen, on input 1n , outputs parameters (I, td) 

with |I| ≥ n. Each value of I defines a set DI that constitutes the domain and range 
of a permutation (i.e., bijection) fI : DI → DI.

– Let Gen’ be Gen that only outputs I. Then, (Gen’,Samp,f) is a family of 
OWPs.

– Let (I, td) be the output of Gen(1n). The deterministic inverting algorithm Inv, on 
input td and y ∈ DI , outputs an element x ∈ DI. We write this as x := Invtd(y). We 
require that with all but negl. probability over (I, td) output by Gen(1n) and uniform 
choice of x ∈ DI, we have

Invtd(fI(x))=x.
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One-Way Permutation – Candidates

● RSA Assumption
– Is it a OWP? Yes, we assume. 

 
● Best currently known way to break RSA assumption is to factor N and then 

compute e’th roots mod p and q and use CRT to recover the final result
– RSA Assumption implies Factoring

● Do we need to factor? 
– Computing e’th roots modulo N yields a facotring algorithm? Unknown for 

e ≥ 3. 
– Not known to be equivalent to factoring

 
● Equivalence known for square roots!

– Not a special case of RSA (2 not coprime to φ(N))
– Rabin cryptosystem (not popular in practice)
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Textbook RSA Encryption

● KeyGen(1n): Pick two random n-bit primes p,q, set N = pq, pick e s.t. 
gcd(e ,φ( N )) = 1, compute d := e−1 mod φ(N) output (sk , pk) := (( d , N ), 
(e ,N))

● Enc (m, pk): On input m ∈ ZN and pk = (e , N) , compute and output
 

c := me mod N 

● Dec (c, sk): On input c an d sk = (d , N) , compute and output 

m := cd mod N

Proof of correctness of RSA will be done as a HW.

We have for all m ∈ ZN that m = (me)d mod N
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OW-CPA Security

Encpk(·)

A public-key encryption scheme Π = (Gen, Enc, Dec) has one-way 
encryptions in the presence of an eavesdropper if for all PPT 
adversaries A there is a negligible function negl s.t.

Pr[PubK
A,Π(n)=1]  ≤ negl(n) .  

ow-cpa
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Security of Textbook RSA

● One-way security (OW-CPA) under RSA Assumption
– Adversary gets public key and encryption of a random message 
– Adversary needs to output the message

● Very weak security guarantees
– Guarantees only for uniformly random messages
– Adversary has to reconstruct entire message 

● Interesting property: homomorphic PKE
– Given two ciphertexts c1 and c2 under same public key, we can operate on the 

underlying plaintexts without prior decryption
● c1 = m1e mod N, c2 = m2e mod N: c1c2 = (m1m2)e mod N

– Problem (no CCA secuirty – see next lecture), but also interesting feature (if at 
least IND-CPA secure)
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IND-CPA Security

A public-key encryption scheme Π = (Gen, Enc, Dec) has indistinguishable 
encryptions in the presence of an eavesdropper if for all probabilistic 
polynomial-time adversaries A there is a negligible function negl s.t.

Pr[PubK
A,Π(n)=1]  ≤ ½ + negl(n) .  
eav

Encpk(·)
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Some Observations

PROPOSITION 11.3 If a public-key encryption scheme has indistinguish-
able encryptions in the presence of an eavesdropper, it is IND-CPA-secure.

THEOREM 11.4 No deterministic public-key encryption scheme is IND-CPA-
secure.

THEOREM: No public-key encryption scheme can be perfectly secret.

Encpk(·)

Why? 

Analogous for one-wayness
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Multiple Encryptions

● In practice we want to use the same pk to encrypt multiple messages

THEOREM 11.6 If a public-key encryption scheme Π is IND-CPA-secure, then
it also has indistinguishable multiple encryptions.
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Proof Idea

● Let us fix a polynomial bound t=poly(n) on the queries to LoR
● We now define a sequence of “intermediate experiments”

– Let us start in an experiment where LoR has bit b=0 
● Adversary submits ((m1,0,m1,1), …, (mt,0,mt,1)) and LoR always return 

encryptions of mi,0  
● Adversary sees (Epk(m1,0), …, Epk(mt,0))

– Let the i’th experiment change the first i positions in the responses to 
(Epk(m1,1), …, Epk(mi,1))

– After t steps we end up with LoR replying (Epk(m1,1), …, Epk(mt,1)) and thus are in 
the experiment where LoR has bit b=1

● If the probability of distuinguishing the first and the last experiment is negligble, 
we have proven our claim

● Formally, we use a hybrid argument

(Epk(m1,0), …, Epk(mt,0)) (Epk(m1,1), …, Epk(mt,0))≈ (Epk(m1,1), …, Epk(mt,0))≈ ≈ (Epk(m1,1), …, Epk(mt,1))≈...

Reduction to IND-CPA Reduction to IND-CPA
...
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Arbitrary Long Messages

● We can use this fact to construct from any PKE  Π = (Gen, Enc, Dec) 
another PKE  Π’ = (Gen, Enc’, Dec’).

● Assume that Π encrypts messages from {0,1}m, then we can construct a 
scheme for messages of length {0,1}m·k for any k  ∈ N

● Encryption simply looks as follows and decryption works the obvious 
way:
– Enc’pk (m) := Encpk(m1),  . . . , Encpk(mk)

CLAIM 11.7 Let Π and Π’ be as above. If Π is IND-CPA-secure, then so is Π’.
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Arbitrary Long Messages in Practice

● The previous method is rather inefficient
● In practice so called “hybrid encryption” is used

– Formal discussion after the holidays via the KEM/DEM paradigm 

Enc
Enc’

pk

k
m

c
c’

(KGen, Enc, Dec)

(KGen’, Enc’, Dec’)

Public key encryption scheme

Symmetric encryption scheme
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Random Oracle Model (ROM)

Mihir Bellare, Phillip Rogawayx

H(x)

Truly random function H: {0,1}* → {0,1}n

● Function H that can be accessed in a black-box way
– Answers consistently for values x already seen 
– For new values x, choose random n bit string as answer 

● Do they exist? 
– NO! But let us assume cryptographic hash 

functions behave “approximately” like ROs

Look up, throw dice, write down,….
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Random Oracle Model (ROM)

Mihir Bellare, Phillip Rogaway

● Why ROM?
– Allows efficient constructions of cryptographic 

primitives with “provable security” guarantees
– The secuirty proofs are then in the ROM
– Efficient signature and encryption schemes (RSA-OAEP, 

RSA-PSS, etc.)

● How are they used in security proofs?
– Sample a random H at the beginning of an experiment
– Output of ROM fully hidden unless queried, i.e., H(m||r) for r a large random string
– Typically we assume that the reduction can “program” the random oracle, i.e., can 

choose the answers to the oracle calls
● This is easily possible as all the answers are independent
● Can embed information usable to the reduction in oracle answers (we will see examples)
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Criticism of the ROM

● Often considered as a “heuristic” argument for security instead of a 
real proof, as ROM is a very strong idealization

● There are schemes that can be shown secure in the ROM, but insecure 
when ROM is replaced with any real hash function
– Though, this example is very artificial 
– No realistic example of this type known

● Proofs in the ROM for practical constructions appear to be very robust! 
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RSA Encryption in the ROM (A hybrid encryption scheme)

● Let H: ZN → {0,1}k be a hash function modeled as a random oracle
● Let RSA encryption and decryption be as follows:

– Enc(m , pk) := (H(x)  m , x⊕ m , x e mod N) for m ∈ {0,1}k and x ←$ ZN*

– Dec((c1,c2), sk) := H(c2d mod N)  c⊕ m , x 1

CLAIM: The above construction is CPA-secure under the RSA assumption in 
the ROM.

Proof idea:
● To obtain information about m from (c1,c2) one has to learn information about H(x)
● If the adversary does not query H(x), then challenge ciphertext is independent from mb

● To learn information about H(x), adversary has to query it. We can embed RSA challenge y as 
c* = (r, y) with r uniformly random 

● Challenge ciphertext is hidden information theoretically unless random oracle queried on x 
s.t. y = xe mod N

● If this happens, we have an adversary against the RSA assumption (thus we can rule out, that 
the adversary queries x to H).  
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Standardized Padded Variants of RSA

● Use of textbook RSA on preprocessed messages 
● RSA-PKCS# 1 v1.5 (should not be used!!)*

– “Padded RSA”: Basically, encrypt m’:=m||r with random r
● PKCS(m, r) = 0x00||0x02||r||0x00||m

– No proof of security for assumed CPA secure version known
– Definitely no CCA security (see next lecture)

● RSA-OAEP (Optimal Asymmetric Encryption Padding)
– More complex preprocessing
– Two-round Feistel network with G and H as 

round functions
● Invertible!

– Proof of IND-CCA security in the ROM; thus also 
IND-CPA secure

*Matthew Green: “PKCS#1v1.5 is awesome — if you’re teaching a class on how to attack cryptographic protocols. In 
all other circumstances it sucks.”
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RSA Implementation (Pitfalls)

● Small public exponents, i.e., e=3
– Efficient encryption (only two multiplications)
– Various attack scenarios known (to reconstruct the message) 

● If the same message is encrypted under at least 3 different public keys
● If short messsages are encrypted (and no modular reduction required)

● Reasonable choice of public exponent: e=65537
– Avoids low-exponent attacks and reasonable fast: 65537 = 216+1

● Private exponents must not be too small
– Brute force attacks 
– Even if d≈N1/4 (Wiener, improved by Boneh & Durfee) attacks are known
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