Modern Cryptography: Lecture 11
Public Key Encryption 1/l

Daniel Slamanig

Organizational

Where to find the slides and homework?

How to contact me?

Tutor: Karen Klein

Official page at TU, Location etc.

Tutorial, TU site

« Exam for the second part: Thursday 31.01.2019 15:00-17:00 (Tutorial slot)

2/31

https://danielslamanig.info/ModernCrypto18.html
mailto:daniel.slamanig@ait.ac.at
mailto:karen.klein@ist.ac.at
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&courseNr=192062&semester=2018W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&courseNr=192062&semester=2018W
https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsrid=341&courseNumber=192063&courseSemester=2018W
https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsrid=341&courseNumber=192063&courseSemester=2018W

Overview Public Key Encryption

m::DecskA(c)

c::EncpkA(m)

secret key sk,
public key pR,

Insecure channel public key pk,

Overview Public Key Encryption

Now every user has a secret key sk and a
public key pk (secret key sk cannot be efficiently
computed from pk)

« Authentic copy of pk can be made public

 How to guarantee that public keys are authentic in practice?

— Public keys look “random” and no relation to identiy of the holder exists - so
binding must be done explicitly

- Let some trusted entity (CA) explicitly “certify” the connection between ID and
pk
— Later in the course we will then see an alternative approach

e public key = identity (identity-based encryption)

* But setting is different

Certifying Public Keys

Certificate Authority (CA)

 Demonstrate that you

hold sk for pk
(sk, pk)

— Proof of Possession (PoP)

« CA certifies pk]||ID

- ID: mail, domain, etc.

« CA s trusted to operate
properly (PKI model)

- CA Is “self-certified”

Sig(pk||Lisa)

« Alternative models
- Web of trust (e.g., PGP)
- Decentralized PKI (DPKI)
e “Self Sovereign Identity” (e.g., Sovrin)

Overview Public Key Encryption

ING-DiBa-willkommen ' x —+

£ > I &

ING ‘4 DiBa

Certificate Viewer: "www.ing-diba.de”

General Details

This certificate has been verified For the Following uses:

SSL Client Certificate
SSL Server Certificate

Issued To

Common Name (CN) kNWW.iﬂg*diba.dE

Organization (O) ING-DiBa AG

Organizational Unit (OU) <Not Part OF Certificate>

Serial Number 00:FA:99:D6:56:9D:62:13:31:00:00:00:00:54:CF:14:A6

Issued By
Common Name (CN) Entrust Certification Authority -L1M
Organization (0) Entrust, Inc.
Organizational Unit (OU) See www.entrust.net/legal-terms
Period of Validity
Begins On

Expires On

October 18, 2018
October 18, 2019

Fingerprints
SHA-256 Fingerprint 77:D2:18:81:67:96:0E:45:5E:74:B6:BC:0D:87:05:6

01:53:55:5C:36:2B:70:E8:A6:CB:86:67:BF:FD:46:8

SHA1 Fingerprint CD:76:F5:83:50:89:CF:DF:1B:4F:18:D3:24:CD:82:BF:ED:64:55:E2

w.ing-diba.de/?

General Details

ING-DiBa - Willkommen bei Deutschlands beliebtester Bank - Mozilla Firefox

o @

Page Info - https:/fwww.ing-diba.de/?wt_cc2=PT6MX&wkt_ga=55277413804_3063117179... — O

E =» @3

General Media Permissions

Website Identity
Website: www.ing-diba.de
owner: ING-DiBa AG
Verified by: Entrust, Inc.
Expireson: October 18, 2019

en

View Certificate

Certificate Viewer: "www.ing-diba.de” Ne

Yes,
cookies

No

Clear Cookies and Site Data

Certificate Hierarchy View Saved Passwords
v Entrust Root Certification Authority - G2
v Entrust Certification Authority - L1M
www.ing-diba.de
Certificate Fields
Subject

~ Subject Public Key Info

ES_256_GCM_SHA384, 256 bit keys, TLS 1.2)
transmitted over the Internet.
to view information traveling between

1is page as it traveled across the network.
Subject Public Key Algorithm
Subject's Public Key
v Extensions
Certificate Subject Alt Name
Object Identifier (1361411112924 2)

Help

Field Value

Modulus (2048 bits):
d4 c5 e3 f6 b9 29 11
e3 ea 1d 76 96 b6 bd
e3 33 4b e4
bf 4a 53 1d
7b de 34 cf

x

6/31

Public Key Encryption: Definition

DEFINITION 111 A public-key encryption scheme is a triple of PPT
algorithms (Gen, Enc, Dec) such that:

1. The key-generation algorithm Gen takes as input the security parameter
1" and outputs a pair of keys (pk, sk) (the message space M is implicit in
the public key).

2. The encryption algorithm Enc takes as input a public key pk and a mes-
sage m from some message space. It outputs a ciphertext ¢, and we write

this as ¢ ¢ Encpk(m). (We often also write ¢ < Enc(m, pk))

3. The deterministic decryption algorithm Dec takes as input a private key
sk and a ciphertext ¢, and outputs a message m or a special symbol L

denoting failure. We write this as m := Dec_,(c). (We often also write
m := Dec(c, sk)).

It Is required that, except possibly with negligible probability over
(pk, sk) « Gen(1"), we have

Decsk(Encpk(m)) = m
for any message meM. 7/31

Some Remarks on the Definition

* The encryption algorithm may be deterministic or probabilistic

* The decryption algorithm may be perfectly correct (never fails) or may
fail with negligible probability

 Every instance has an associated message space M (which we assume
to be implicitly defined when seeing the public key)

- In the simplest case we encrypt bits

e itis easy to extend such a scheme to bitstrings {01}k

- Usually M represents some algebraic structure which does not contain
all bitstrings of some fixed size

» typically we have efficient ways to injectively encode messages from
{01}k into elements from M

8/31

Constructing Public Key Encryption

Can You Solve This?

* Need some hard problems to rely on! ?+t+?=60
2+®+®=-30
®-4 =3
¥ x® =0

* Will look into constructions from factoring-related problems

— RSA in particular

« Will look at constructions from DL-related problems (next lecture)
- We already have discussed DDH and CDH

9/31

Factoring

Every integer N>1 can be uniquely (up to ordering) written as N=[[; p;®

- p; are distinct primes and e;>1 for all |

Given a factorization It Is easy to compute the composite N

Computing the factorization is hard for certain forms of composites

— Hardest If numbers to factor have only large prime factors

A trivial algorithm to find the factors of any given N is trival division

- Inefficient as It represents an exponential-time algorithm

10/31

Factoring

« Two types of algorithms

- Generic ones: apply to arbitrary N

— Specific ones: tailored to work for N of some specific form

 Specific algorithm
- Factor N=pg when p-1 has small prime factors

e Choosing uniform n-bit primes p,q, small prime factors of p-1 and g-1
are very unlikely

» General purpose algorithms
- O(N1/% - polylog(qg)) runtime (still exponential)

— Fastest general purpose factoring algorithm is the

e Subexponential with runtime 20((log N)1/3 (log log N)2/3)

11/31

* Let GenModulus be a polynomial-time algorithm that on input 1" outputs
(N,p,q) where N=pq and p,q are n-bit primes.

DEFINITION 8.45: Factoring is hard relative to GenModulus if for all PPT
algorithms A there exists a negligible function such that

Pr[FactoringA’GenModulus(n):ﬂ < negl(n) .

FaCtorA,GenModulus (n)
security parameter n € N I—I
/\ (N,p,q) <= GenModulus(17)
N
-
(', q") _ TN =pq
return 1

else return O

RSA Assumption

* Let GenRSA be a polynomial-time algorithm that on input 10 outputs (N,e,d)
where N=pqg and p,q are n-bit primes and e,d>0 are integers s.t. gcd(e,((N))=T1
and ed =1 mod @(N).

DEFINITION 8.46: The RSA problem is hard relative to GenRSA if for all PPT
algorithms A there exists a negligible function such that

Pr[RSA—InvAGenRSA(n):ﬂ < negl(n) .

RSA-INV 4 conrsa (n)
security parameter n € N
A []
! (N,e,d) <= GenRSA(1")
(N’ e, _}’)) <—$ ZTV
-
X € 2Ly if x¢ =y mod N
>
return 1

else return O

One-Way Permutation (OWP)

e DEFINITION 8.75: A triple I = (Gen, Samp, f) of PPT algorithms is a family of
permutations if the following hold:

- The parameter-generation algorithm Gen, on input 11, outputs parameters | with |I| > n.
Each value of | defines a set D, that constitutes the domain and range of a permutation

(i.e., bijection) f,: D, = D,.
DEFINITION 8.76: The family of permutations I = (Gen, Samp, f) is one-way
If for all PPT algorithms A there exists a negligible function negl such that

Pr[lnvertA’ﬂ(n):ﬂ < negl(n) .

Invert , - (n)
security parémeter neN

I_I I <2 Gen(1")
x <= Samp(I)

- (I, y) y «— f1(x)

/ . N\
X _ if f7(x’) =y

return 1

else return O

14/31

Trapdoor One-Way Permutation

e DEFINITION 13.1: A triple M = (Gen, Samp, f, Inv) of PPT algorithms is a family of
permutations if the following hold:

- The parameter-generation algorithm Gen, on input 1", outputs parameters (I, td)
with [I| > n. Each value of | defines a set D, that constitutes the domain and range
of a permutation (i.e., bijection) f,: D, = D,.

- Let (I, td) be the output of Gen(1"). The deterministic on
input td and y € D,, outputs an element x € D,. We write this as x := Inv4(y). We

require that with all but negl. probability over (I, td) output by Gen(1") and uniform

choice of x € D,, we have
INViq(fi(X))=x. / \/ \7/ \

I: dﬂmam] range |

o

f L hard

e r:asz,r wuth trapdmr t

15/31

One-Way Permutation — Candidates

RSA Assumption

- Is it a OWP? Yes, we assume.

* Best currently known way to break RSA assumption is to factor N and then
compute e'th roots mod p and g and use CRT to recover the final result

— RSA Assumption implies Factoring

e Do we need to factor?

- Computing e'th roots modulo N yields a facotring algorithm? Unknown for
e>3.

- Not known to be equivalent to factoring

* Equivalence known for square roots!
- Not a special case of RSA (2 not coprime to @(N))

- Rabin cryptosystem (not popular in practice)

16/31

Textbook RSA Encryption

e KeyGen(1n): Pick two random n-bit primes p,q, set N = pg, pick e s.t.
gcd(e ,(N)) =1, compute d := e mod ©(N) output (sk, pk):=((d, N),
(e ,N))

e Enc(m, pk): On input m € Z, and pk = (e, N), compute and output

c:= me mod N

e Dec(c,sk):Oninputcandsk=(d, N), compute and output

m := cd mod N

We have for all m € Z, that m = (m®&)¥ mod N

Proof of correctness of RSA will be done as a HW.

17/31

OW-CPA Security

(pk, sk) <= Gen(1")
m < M
c* 2 Encp(m)
ifm*=m

return 1
else return O

A public-key encryption scheme T = (Gen, Enc, Dec) has one-way
encryptions in the presence of an eavesdropper if for all PPT
adversaries A there Is a negligible function negl s.t.

ow-cpa
Pr[PubKA’H(n):ﬂ < negl(n) .

Security of Textbook RSA

e One-way security (OW-CPA) under RSA Assumption
— Adversary gets public key and encryption of a random message

— Adversary needs to output the message

— Guarantees only for uniformly random messages

— Adversary has to reconstruct entire message

* Interesting property: homomorphic PKE

- Given two ciphertexts ¢, and ¢, under same public key, we can operate on the
underlying plaintexts without prior decryption

e ¢,=memodN,c,=m,e mod N: ¢,c, = (m;m,)e mod N

- Problem (no CCA secuirty — see next lecture), but also interesting feature (if at
least IND-CPA secure)

19/31

IND-CPA Security

Pubei;‘(‘,’rI Security §11.211
A S

(pk, sk) <= Gen(1")

(mo, m) c* 2 Encpk(mb)
c’ ifb* = b
b return 1

else return O

A public-key encryption scheme T = (Gen, Enc, Dec) has indistinguishable
encryptions in the presence of an eavesdropper if for all probabilistic
polynomial-time adversaries A there is a negligible function negl s.t.

eav

Pr[PubKA’H(n):ﬂ <1 + negl(n) .

Some Observations

PROPOSITION 11.3 If a public-key encryption scheme has indistinguish-
able encryptions in the presence of an eavesdropper, it is IND-CPA-secure.

Analogous for one-wayness

THEOREM: No public-key encryption scheme can be perfectly secret.

THEOREM 11.4 No deterministic public-key encryption scheme is IND-CPA-
secure.

Multiple Encryptions

* |n practice we want to use the same pk to encrypt multiple messages

(mio, mj1) | Oracle LRpko()
ﬂ 3 X
' (pk, sk) <= Gen(1")
b ifb* =0b
return 1

else return O

THEOREM 11.6 If a public-key encryption scheme [T is IND-CPA-secure, then
It also has indistinguishable multiple encryptions.

Proof Idea

e Let us fix a polynomial bound t=poly(n) on the queries to LoR
 We now define a sequence of “intermediate experiments”
- Let us start in an experiment where LoR has bit b=0

e Adversary submits ((m,,m;,), .., (M.;,M;)) and LoR always return
encryptions of m,

e Adversary sees (E,(m.,), ..., Eg(myp))

- Let the I'th experiment change the first | positions in the responses to
(Ep|<(m1,1)r Sy Epk(mi,1)>

- After t steps we end up with LoR replying (E,(m,,), .., E;(m,,)) and thus are in
the experiment where LoR has bit b=1

» |fthe probability of distuinguishing the first and the last experiment is negligble,
we have proven our claim

* Formally, we use a hybrid argument

(o E(M) = (E (M), ey E (M)% % (E (), .) =(E (M), .)
— - N— _/
Reduction to IND-CPA Reduction to IND-CPA

23/31

Arbitrary Long Messages

e We can use this fact to construct from any PKE I = (Gen, Enc, Dec)
another PKE M’ = (Gen, Enc’, Dec’).

« Assume that 1 encrypts messages from {0,1}m, then we can construct a
scheme for messages of length {0,1}mk for any k € N

* Encryption simply looks as follows and decryption works the obvious
way:

- Enc’y (M) := Ency(my), ..., Ency(my)

CLAIM 11.7 Let M and M’ be as above. If I is IND-CPA-secure, then so is 1.

2431

Arbitrary Long Messages in Practice

 The previous method is rather inefficient
* |n practice so called “hybrid encryption” is used

- Formal discussion after the holidays via the KEM/DEM paradigm

pk > Symmetric encryption scheme

(KGen' Enc’, Dec’)

|

C

25/31

Random Oracle Model (ROM)

* Function H that can be accessed in a black-box way

- Answers consistently for values x already seen

— For new values x, choose random n bit string as answer

Truly random function H:_{Oj}* > {o1)"

H(x)

* Do they exist?

— NO! But let us assume cryptographic hash
functions behave “approximately” like ROs

Random Oracle Model (ROM)

 Why ROM?

- Allows efficient constructions of cryptographic
primitives with “provable security” guarantees

- The secuirty proofs are then in the ROM

- Efficient signature and encryption schemes (RSA-OAEP,
RSA-PSS, etc.)

Mihir Bellére, Phillip ’Rogavvay

 How are they used in security proofs?
- Sample a random H at the beginning of an experiment
- Output of ROM fully hidden unless queried, i.e., H(m||r) for r a large random string

- Typically we assume that the reduction can “program” the random oracle, i.e., can
choose the answers to the oracle calls

* This is easily possible as all the answers are independent

« Can embed information usable to the reduction in oracle answers (we will see examples)

27131

Criticism of the ROM

e Often considered as a “heuristic” argument for security instead of a
real proof, as ROM Is a very strong idealization

e There are schemes that can be shown secure in the ROM, but insecure
when ROM Is replaced with any real hash function

— Though, this example Is very artificial

— No realistic example of this type known

e Proofs in the ROM for practical constructions appear to be very robust!

28/31

RSA Encryption in the ROM (A hybrid encryption scheme)

« Let H:Z, = {01}k be a hash function modeled as a random oracle

e Let RSA encryption and decryption be as follows:
- Enc(m, pk) := (H(x) ® m, xe mod N) for m € {01}k and x <% Z*
- Dec((c,,c5), sk) == H(c,d mod N) @ c,

CLAIM: The above construction is CPA-secure under the RSA assumption in

the ROM.,

Proof idea:

« To obtain information about m from (c,,c,) one has to learn information about H(x)
« If the adversary does not query H(x), then challenge ciphertext is independent from m,

« To learn information about H(x), adversary has to query it. We can embed RSA challenge y as
c* = (r,y) with r uniformly random

» Challenge ciphertext is hidden information theoretically unless random oracle queried on x
st.y=xemodN

 If this happens, we have an adversary against the RSA assumption (thus we can rule out, that
the adversary queries x to H).

29/31

Standardized Padded Variants of RSA

e Use of textbook RSA on preprocessed messages
« -RSA-PKCSH#H 1v1.5<)*
- “Padded RSA": Basically, encrypt m:=m/||r with random r

e PKCS(m, r) = 0x00]||0x02]||r]]0x00]||m
— No proof of security for assumed CPA secure version known

- Definitely no CCA security (see next lecture)

e RSA-OAEP (Optimal Asymmetric Encryption Padding)

- More complex preprocessing (m |0k r)

- Two-round Feistel network with G and H as é.—E

round functions

* |nvertible!

— Proof of IND-CCA security in the ROM; thus also
IND-CPA secure

H

(s t)

*Matthew Green: “PKCSH1v1.5 is awesome — if you're teaching a class on how to attack cryptographic protocols. In
all other circumstances it sucks.”

RSA Implementation (Pitfalls)

 Small public exponents, i.e., e=3
- Efficient encryption (only two multiplications)
- Various attack scenarios known (to reconstruct the message)

* |f the same message Is encrypted under at least 3 different public keys
 |f short messsages are encrypted (and no modular reduction required)

* Reasonable choice of public exponent: e=65537

— Avolids low-exponent attacks and reasonable fast: 65537 = 216+1
* Private exponents must not be too small

— Brute force attacks

- Even if d=NV/4 (Wiener, improved by Boneh & Durfee) attacks are known

31/31

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

