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Overview Public Key Encryption

m::DecskA(c)

c::EncpkA(m)

secret key sk,
public key pR,

Insecure channel public key pk,




Overview Public Key Encryption

Now every user has a secret key sk and a
public key pk (secret key sk cannot be efficiently
computed from pk)

« Authentic copy of pk can be made public

 How to guarantee that public keys are authentic in practice?

— Public keys look “random” and no relation to identiy of the holder exists - so
binding must be done explicitly

- Let some trusted entity (CA) explicitly “certify” the connection between ID and
pk
— Later in the course we will then see an alternative approach

e public key = identity (identity-based encryption)

* But setting is different




Certifying Public Keys

Certificate Authority (CA)

 Demonstrate that you

hold sk for pk
(sk, pk)

—  Proof of Possession (PoP)

« CA certifies pk]||ID

- ID: mail, domain, etc.

« CA s trusted to operate
properly (PKI model)

- CA Is “self-certified”

Sig(pk||Lisa)

« Alternative models
- Web of trust (e.g., PGP)
- Decentralized PKI (DPKI)
e “Self Sovereign Identity” (e.g., Sovrin)




Overview Public Key Encryption

# ING-DiBa-willkommen ' x —+

£ > I &

ING ‘4 DiBa

Certificate Viewer: "www.ing-diba.de”

General Details

This certificate has been verified For the Following uses:

SSL Client Certificate
SSL Server Certificate

Issued To

Common Name (CN) kNWW.iﬂg*diba.dE

Organization (O) ING-DiBa AG

Organizational Unit (OU) <Not Part OF Certificate>

Serial Number 00:FA:99:D6:56:9D:62:13:31:00:00:00:00:54:CF:14:A6

Issued By
Common Name (CN) Entrust Certification Authority -L1M
Organization (0) Entrust, Inc.
Organizational Unit (OU) See www.entrust.net/legal-terms
Period of Validity
Begins On

Expires On

October 18, 2018
October 18, 2019

Fingerprints
SHA-256 Fingerprint 77:D2:18:81:67:96:0E:45:5E:74:B6:BC:0D:87:05:6

01:53:55:5C:36:2B:70:E8:A6:CB:86:67:BF:FD:46:8

SHA1 Fingerprint CD:76:F5:83:50:89:CF:DF:1B:4F:18:D3:24:CD:82:BF:ED:64:55:E2

w.ing-diba.de/?

General Details

ING-DiBa - Willkommen bei Deutschlands beliebtester Bank - Mozilla Firefox

o @

Page Info - https:/fwww.ing-diba.de/?wt_cc2=PT6MX&wkt_ga=55277413804_3063117179... — O

E =» @3

General Media Permissions

Website Identity
Website: www.ing-diba.de
owner: ING-DiBa AG
Verified by:  Entrust, Inc.
Expireson: October 18, 2019

en

View Certificate

Certificate Viewer: "www.ing-diba.de” Ne

Yes,
cookies

No

Clear Cookies and Site Data

Certificate Hierarchy View Saved Passwords
v Entrust Root Certification Authority - G2
v Entrust Certification Authority - L1M
www.ing-diba.de
Certificate Fields
Subject

~ Subject Public Key Info

ES_256_GCM_SHA384, 256 bit keys, TLS 1.2)
transmitted over the Internet.
to view information traveling between

1is page as it traveled across the network.
Subject Public Key Algorithm
Subject's Public Key
v Extensions
Certificate Subject Alt Name
Object Identifier (1361411112924 2)

Help

Field Value

Modulus (2048 bits):
d4 c5 e3 f6 b9 29 11
e3 ea 1d 76 96 b6 bd
e3 33 4b e4
bf 4a 53 1d
7b de 34 cf

x
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Public Key Encryption: Definition

DEFINITION 111 A public-key encryption scheme is a triple of PPT
algorithms (Gen, Enc, Dec) such that:

1. The key-generation algorithm Gen takes as input the security parameter
1" and outputs a pair of keys (pk, sk) (the message space M is implicit in
the public key).

2. The encryption algorithm Enc takes as input a public key pk and a mes-
sage m from some message space. It outputs a ciphertext ¢, and we write

this as ¢ ¢ Encpk(m). (We often also write ¢ < Enc(m, pk))

3. The deterministic decryption algorithm Dec takes as input a private key
sk and a ciphertext ¢, and outputs a message m or a special symbol L

denoting failure. We write this as m := Dec_,(c). (We often also write
m := Dec(c, sk)).

It Is required that, except possibly with negligible probability over
(pk, sk) « Gen(1"), we have

Decsk(Encpk(m)) = m
for any message meM. 7/31




Some Remarks on the Definition

* The encryption algorithm may be deterministic or probabilistic

* The decryption algorithm may be perfectly correct (never fails) or may
fail with negligible probability

 Every instance has an associated message space M (which we assume
to be implicitly defined when seeing the public key)

- In the simplest case we encrypt bits

e itis easy to extend such a scheme to bitstrings {01}k

- Usually M represents some algebraic structure which does not contain
all bitstrings of some fixed size

» typically we have efficient ways to injectively encode messages from
{01}k into elements from M
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Constructing Public Key Encryption

Can You Solve This?

* Need some hard problems to rely on! ?+t+?=60
2+®+®=-30
®-4 =3
¥ x® =0

* Will look into constructions from factoring-related problems

— RSA in particular

« Will look at constructions from DL-related problems (next lecture)
- We already have discussed DDH and CDH
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Factoring

Every integer N>1 can be uniquely (up to ordering) written as N=[[; p;®

- p; are distinct primes and e;>1 for all |

Given a factorization It Is easy to compute the composite N

Computing the factorization is hard for certain forms of composites

— Hardest If numbers to factor have only large prime factors

A trivial algorithm to find the factors of any given N is trival division

- Inefficient as It represents an exponential-time algorithm
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Factoring

« Two types of algorithms

- Generic ones: apply to arbitrary N

— Specific ones: tailored to work for N of some specific form

 Specific algorithm
- Factor N=pg when p-1 has small prime factors

e Choosing uniform n-bit primes p,q, small prime factors of p-1 and g-1
are very unlikely

» General purpose algorithms
- O(N1/% - polylog(qg)) runtime (still exponential)

— Fastest general purpose factoring algorithm is the

e Subexponential with runtime 20((log N)1/3 (log log N)2/3)
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* Let GenModulus be a polynomial-time algorithm that on input 1" outputs
(N,p,q) where N=pq and p,q are n-bit primes.

DEFINITION 8.45: Factoring is hard relative to GenModulus if for all PPT
algorithms A there exists a negligible function such that

Pr[FactoringA’GenModulus(n):ﬂ < negl(n) .

FaCtorA,GenModulus (n)
security parameter n € N I—I
/\ (N,p,q) <= GenModulus(17)
N
-
(', q") _ TN =pq
return 1

else return O




RSA Assumption

* Let GenRSA be a polynomial-time algorithm that on input 10 outputs (N,e,d)
where N=pqg and p,q are n-bit primes and e,d>0 are integers s.t. gcd(e,((N))=T1
and ed =1 mod @(N).

DEFINITION 8.46: The RSA problem is hard relative to GenRSA if for all PPT
algorithms A there exists a negligible function such that

Pr[RSA—InvAGenRSA(n):ﬂ < negl(n) .

RSA-INV 4 conrsa (n)
security parameter n € N
A []
! (N,e,d) <= GenRSA(1")
(N’ e, _}’) ) <—$ ZTV
-
X € 2Ly if x¢ =y mod N
>
return 1

else return O




One-Way Permutation (OWP)

e DEFINITION 8.75: A triple I = (Gen, Samp, f) of PPT algorithms is a family of
permutations if the following hold:

- The parameter-generation algorithm Gen, on input 11, outputs parameters | with |I| > n.
Each value of | defines a set D, that constitutes the domain and range of a permutation

(i.e., bijection) f,: D, = D,.
DEFINITION 8.76: The family of permutations I = (Gen, Samp, f) is one-way
If for all PPT algorithms A there exists a negligible function negl such that

Pr[lnvertA’ﬂ(n):ﬂ < negl(n) .

Invert , - (n)
security parémeter neN

I_I I <2 Gen(1")
x <= Samp(I)

- (I, y) y «— f1(x)

/ . N\
X _ if f7(x’) =y

return 1

else return O
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Trapdoor One-Way Permutation

e DEFINITION 13.1: A triple M = (Gen, Samp, f, Inv) of PPT algorithms is a family of
permutations if the following hold:

- The parameter-generation algorithm Gen, on input 1", outputs parameters (I, td)
with [I| > n. Each value of | defines a set D, that constitutes the domain and range
of a permutation (i.e., bijection) f,: D, = D,.

- Let (I, td) be the output of Gen(1"). The deterministic on
input td and y € D,, outputs an element x € D,. We write this as x := Inv4(y). We

require that with all but negl. probability over (I, td) output by Gen(1") and uniform

choice of x € D,, we have
INViq(fi(X))=x. / \/ \7/ \

I: dﬂmam] range |

o

f L hard

e r:asz,r wuth trapdmr t
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One-Way Permutation — Candidates

RSA Assumption

- Is it a OWP? Yes, we assume.

* Best currently known way to break RSA assumption is to factor N and then
compute e'th roots mod p and g and use CRT to recover the final result

— RSA Assumption implies Factoring

e Do we need to factor?

- Computing e'th roots modulo N yields a facotring algorithm? Unknown for
e>3.

- Not known to be equivalent to factoring

* Equivalence known for square roots!
- Not a special case of RSA (2 not coprime to @(N))

- Rabin cryptosystem (not popular in practice)
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Textbook RSA Encryption

e KeyGen(1n): Pick two random n-bit primes p,q, set N = pg, pick e s.t.
gcd(e ,( N )) =1, compute d := e mod ©(N) output (sk, pk):=((d, N),
(e ,N))

e Enc(m, pk): On input m € Z, and pk = (e, N), compute and output

c:= me mod N

e Dec(c,sk):Oninputcandsk=(d, N), compute and output

m := cd mod N

We have for all m € Z, that m = (m®&)¥ mod N

Proof of correctness of RSA will be done as a HW.
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OW-CPA Security

(pk, sk) <= Gen(1")
m < M
c* 2 Encp(m)
ifm*=m

return 1
else return O

A public-key encryption scheme T = (Gen, Enc, Dec) has one-way
encryptions in the presence of an eavesdropper if for all PPT
adversaries A there Is a negligible function negl s.t.

ow-cpa
Pr[PubKA’H(n):ﬂ < negl(n) .




Security of Textbook RSA

e One-way security (OW-CPA) under RSA Assumption
— Adversary gets public key and encryption of a random message

— Adversary needs to output the message

— Guarantees only for uniformly random messages

— Adversary has to reconstruct entire message

* Interesting property: homomorphic PKE

- Given two ciphertexts ¢, and ¢, under same public key, we can operate on the
underlying plaintexts without prior decryption

e ¢,=memodN,c,=m,e mod N: ¢,c, = (m;m,)e mod N

- Problem (no CCA secuirty — see next lecture), but also interesting feature (if at
least IND-CPA secure)
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IND-CPA Security

Pubei;‘(‘,’rI Security §11.211
A S

(pk, sk) <= Gen(1")

(mo, m) c* 2 Encpk(mb)
c’ ifb* = b
b return 1

else return O

A public-key encryption scheme T = (Gen, Enc, Dec) has indistinguishable
encryptions in the presence of an eavesdropper if for all probabilistic
polynomial-time adversaries A there is a negligible function negl s.t.

eav

Pr[PubKA’H(n):ﬂ <1 + negl(n) .




Some Observations

PROPOSITION 11.3 If a public-key encryption scheme has indistinguish-
able encryptions in the presence of an eavesdropper, it is IND-CPA-secure.

Analogous for one-wayness

THEOREM: No public-key encryption scheme can be perfectly secret.

THEOREM 11.4 No deterministic public-key encryption scheme is IND-CPA-
secure.




Multiple Encryptions

* |n practice we want to use the same pk to encrypt multiple messages

(mio, mj1) | Oracle LRpko( )
ﬂ 3 X
' (pk, sk) <= Gen(1")
b ifb* =0b
return 1

else return O

THEOREM 11.6 If a public-key encryption scheme [T is IND-CPA-secure, then
It also has indistinguishable multiple encryptions.




Proof Idea

e Let us fix a polynomial bound t=poly(n) on the queries to LoR
 We now define a sequence of “intermediate experiments”
- Let us start in an experiment where LoR has bit b=0

e Adversary submits ((m,,m;,), .., (M.;,M;)) and LoR always return
encryptions of m,

e Adversary sees (E,(m.,), ..., Eg(myp))

- Let the I'th experiment change the first | positions in the responses to
(Ep|<(m1,1)r Sy Epk(mi,1)>

- After t steps we end up with LoR replying (E,(m,,), .., E;(m,,)) and thus are in
the experiment where LoR has bit b=1

» |fthe probability of distuinguishing the first and the last experiment is negligble,
we have proven our claim

* Formally, we use a hybrid argument

( o E(M ) = (E (M), ey E (M )% % (E (), . ) =(E (M), . )
— - N— _/
Reduction to IND-CPA Reduction to IND-CPA
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Arbitrary Long Messages

e We can use this fact to construct from any PKE I = (Gen, Enc, Dec)
another PKE M’ = (Gen, Enc’, Dec’).

« Assume that 1 encrypts messages from {0,1}m, then we can construct a
scheme for messages of length {0,1}mk for any k € N

* Encryption simply looks as follows and decryption works the obvious
way:

- Enc’y (M) := Ency(my), ..., Ency(my)

CLAIM 11.7 Let M and M’ be as above. If I is IND-CPA-secure, then so is 1.
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Arbitrary Long Messages in Practice

 The previous method is rather inefficient
* |n practice so called “hybrid encryption” is used

- Formal discussion after the holidays via the KEM/DEM paradigm

pk > Symmetric encryption scheme

(KGen' Enc’, Dec’)

|

C

25/31



Random Oracle Model (ROM)

* Function H that can be accessed in a black-box way

- Answers consistently for values x already seen

— For new values x, choose random n bit string as answer

Truly random function H:_{Oj}* > {o1)"

H(x)

* Do they exist?

— NO! But let us assume cryptographic hash
functions behave “approximately” like ROs




Random Oracle Model (ROM)

 Why ROM?

- Allows efficient constructions of cryptographic
primitives with “provable security” guarantees

- The secuirty proofs are then in the ROM

- Efficient signature and encryption schemes (RSA-OAEP,
RSA-PSS, etc.)

Mihir Bellére, Phillip ’Rogavvay

 How are they used in security proofs?
- Sample a random H at the beginning of an experiment
- Output of ROM fully hidden unless queried, i.e., H(m||r) for r a large random string

- Typically we assume that the reduction can “program” the random oracle, i.e., can
choose the answers to the oracle calls

* This is easily possible as all the answers are independent

« Can embed information usable to the reduction in oracle answers (we will see examples)
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Criticism of the ROM

e Often considered as a “heuristic” argument for security instead of a
real proof, as ROM Is a very strong idealization

e There are schemes that can be shown secure in the ROM, but insecure
when ROM Is replaced with any real hash function

— Though, this example Is very artificial

— No realistic example of this type known

e Proofs in the ROM for practical constructions appear to be very robust!

28/31



RSA Encryption in the ROM (A hybrid encryption scheme)

« Let H:Z, = {01}k be a hash function modeled as a random oracle

e Let RSA encryption and decryption be as follows:
- Enc(m, pk) := (H(x) ® m, xe mod N) for m € {01}k and x <% Z\*
- Dec((c,,c5), sk) == H(c,d mod N) @ c,

CLAIM: The above construction is CPA-secure under the RSA assumption in

the ROM.,

Proof idea:

« To obtain information about m from (c,,c,) one has to learn information about H(x)
« If the adversary does not query H(x), then challenge ciphertext is independent from m,

« To learn information about H(x), adversary has to query it. We can embed RSA challenge y as
c* = (r,y) with r uniformly random

» Challenge ciphertext is hidden information theoretically unless random oracle queried on x
st.y=xemodN

 If this happens, we have an adversary against the RSA assumption (thus we can rule out, that
the adversary queries x to H).
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Standardized Padded Variants of RSA

e Use of textbook RSA on preprocessed messages
« -RSA-PKCSH#H 1v1.5< )*
- “Padded RSA": Basically, encrypt m:=m/||r with random r

e PKCS(m, r) = 0x00]||0x02]||r]]0x00]||m
— No proof of security for assumed CPA secure version known

- Definitely no CCA security (see next lecture)

e RSA-OAEP (Optimal Asymmetric Encryption Padding)

- More complex preprocessing ( m |0k r )

- Two-round Feistel network with G and H as é.—E

round functions

* |nvertible!

— Proof of IND-CCA security in the ROM; thus also
IND-CPA secure

H

( s t )

*Matthew Green: “PKCSH1v1.5 is awesome — if you're teaching a class on how to attack cryptographic protocols. In
all other circumstances it sucks.”




RSA Implementation (Pitfalls)

 Small public exponents, i.e., e=3
- Efficient encryption (only two multiplications)
- Various attack scenarios known (to reconstruct the message)

* |f the same message Is encrypted under at least 3 different public keys
 |f short messsages are encrypted (and no modular reduction required)

* Reasonable choice of public exponent: e=65537

— Avolids low-exponent attacks and reasonable fast: 65537 = 216+1
* Private exponents must not be too small

— Brute force attacks

- Even if d=NV/4 (Wiener, improved by Boneh & Durfee) attacks are known
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