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The Public Key Revolution II/II
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Organizational

● Where to find the slides and homework?
– https://danielslamanig.info/ModernCrypto18.html

● How to contact me?
– daniel.slamanig@ait.ac.at

● Tutor: Karen Klein
– karen.klein@ist.ac.at

● Official page at TU, Location etc.
– https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&cours

eNr=192062&semester=2018W
● Tutorial, TU site

– https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsrid=34
1&courseNumber=192063&courseSemester=2018W

● Exam for the second part: Thursday 31.01.2019 15:00-17:00 (Tutorial slot)
– No tutorial this week → exam for first part

https://danielslamanig.info/ModernCrypto18.html
mailto:daniel.slamanig@ait.ac.at
mailto:karen.klein@ist.ac.at
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&courseNr=192062&semester=2018W
https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&courseNr=192062&semester=2018W
https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsrid=341&courseNumber=192063&courseSemester=2018W
https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsrid=341&courseNumber=192063&courseSemester=2018W
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Discrete Logarithms

● We consider a cyclic group G of order q 
with generator g, so G = {g0, …, gq-1}

● The DL problem: given h=gx to find the
 unique x ∈ Zq 

● Let G be a group generator that on input 
1n outputs a description of a cyclic group 
(G, q, g) with ‖q‖=n (binary length)  Z*53 , g=2

The discrete-logarithm experiment DLog
A,G (n):

1. Run G(1n) to obtain (G, q, g), where G is a cyclic group of
order q (with ‖q‖ = n), and g is a generator of G.
2. Choose a uniform h ∈ G.
3. A is given G, q, g, h, and outputs x ∈ Zq.
4. The output of the experiment is defined to be 1 if gx = h,
and 0 otherwise.
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Discrete Logarithms

● We consider a cyclic group G of order q 
with generator g, so G = {g0, …, gq-1}

● The DL problem: given h=gx to find the
 unique x ∈ Zq 

● Let G be a group generator that on input 
1n outputs a description of a cyclic group 
(G, q, g) with ‖q‖=n (binary length)  Z*53 , g=2

The discrete-logarithm experiment DLog
A,G (n):

1. Run G(1n) to obtain (G, q, g), where G is a cyclic group of
order q (with ‖q‖ = n), and g is a generator of G.
2. Choose a uniform h ∈ G.
3. A is given G, q, g, h, and outputs x ∈ Zq.
4. The output of the experiment is defined to be 1 if gx = h,
and 0 otherwise.

DEFINITION 8.62 We say that the discrete-logarithm problem is hard 
relative to G if for all PPT algorithms A there exists a negligible function 
negl such that 

Pr[DLog
A,G(n) = 1] ≤ negl(n).
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Problems Related to the DLOG Problem

● We will now take a look at two problems related but weaker than the 
DLP; the computational (CDH) and the decisional Diffie–Hellman 
(DDH) problem

● Let DHg(h1, h2) := gloggh1 ·loggh2 
– If h1 = gx1 and h2 = gx2, then DHg(h1, h2) = gx1x2 = h1x2 = h2x1 

● CDH Problem
– Given (G, q, g, h1, h2) compute DHg(h1, h2)

DEFINITION: We say that the CDH problem is hard relative to G if for 
all PPT algorithms A there is a negligible function negl such that

Pr[A(G, q, g, gx , gy ) = gxy] ≤ negl(n),
where the probabilities are taken over the experiment in which G(1n) 
outputs (G, q, g), and then uniform x, y Zq are chosen.
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Problems Related to the DLOG Problem

● DDH Problem
– Given (G, q, g) and uniform random h1, h2 ∈ G, distinguish DHg(h1, h2) 

from uniformly random h’ ∈ G
DEFINITION 8.63: We say that the DDH problem is hard relative to G if for 
all PPT algorithms A there is a negligible function negl such that

Pr[A(G, q, g, gx , gy , gz ) = 1] − Pr[A(G, q, g, gx , gy , gxy ) = 1] ≤ negl(n),

where in each case the probabilities are taken over the experiment in 
which G(1n) outputs (G, q, g), and then uniform x, y, z ∈ Zq are chosen.

Clearly, if we can solve DL, then we can solve DDH and CDH

DDH is a stronger assumption than CDH (HW)

There are groups where the CDH is assumed hard, but the DDH is easy (HW)
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Algorithms for Computing Discrete Logarithms

● Two types of algorithms
– Generic ones: apply to arbitrary groups
– Specific ones: tailored to work for some specifc class of groups

Generic for groups of order q:
-Baby step/giant step (Shanks)*: O(√q · polylog(q)) time and O(√q) space  
-Pollard’s rho*: O(√q · polylog(q)) time and constant space

Generic for groups of order q (if factorization is known/easy to 
compute):
-Pohlig-Hellman: Reduces to finding DL in group or order q’ with q’ the 
largest prime dividing q (use then any algorithm to solve the DL) 
Specific algorithm for Z*p:
-Index Calculus/Number Field Sieve: Subexponential with runtime 
2O((log p) ·(log log p) ) 

* time complexity optimal for generic algorithms
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The Baby-Step/Giant-Step Algorithm I/II 

● Want to solve DL problem for some h=gx in (G, q, g) 
● We know that h must lie somwhere in the cycle {g0, …, gq-1}

– Computing all elements would take Ω(q) time! 

● Take some elements of the cycle at steps t=⌊√q⌋ (the “giant steps”)
– Gives us a list (g0 , gt , g2t , ... , g⌊q/t⌋·t) with gaps of at most t elements
– We know h lies in one of the gaps 
– Compute a list (h·g1, …, h·gt)  of shifts of h (the “baby steps”) 
– One of the points in the “baby list” will be equal to one in the 

“giant list”, i.e.,  h·gi = gk·t for some i and k
– And determine x = (kt − i) mod q
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The Baby-Step/Giant-Step Algorithm II/II 

● Complexity
– O(√q ) exponentiations/multiplications
– Sorting the “giant list” takes O(√q · log q)
– Binary search for each element from “baby list” in O(log q)
– Overall O(√q · polylog(q)) time but need to store O(√q) elements 

● Can we do better generically?
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The Pollard Rho Algorithm*

● Idea: Let Hg,h: Zq × Zq → G be defined by 
Hg,h(x1 , x2 ) = gx1 · hx2 

● The birthday bound says we find a collision
in Hg,h in time O(√q)

● Is possible with constant memory (see §5.4.2)
● If Hg,h(x1 , x2 ) = Hg,h(x1’ , x2’ ) with x1≠x1 and x2≠x2 

then solve γ(x2-x2’) = (x1’-x1) mod q for γ

● Some issues not yet considerd
– Range of hash function must be subset of its domain: Use a standard 

cryptographic hash function F: G → Zq × Zq to obtain the input for G 

* we use the description from the book for consistency



11/31

Choice of Discrete Logarithm Hard Groups

● Generic vs. special algorithms
– If only generic algorithms are available parameters can be chosen much 

smaller; Yields more efficient group operations 
● Prime order vs. composite order groups

– Prime order: Discrete logarithm problem is hardest in prime order 
groups and finding generators is trivial

– Composite order: Need to have subgroup of sufficient size (recall: 
largest prime dividing the order; may need to consider specific 
algorithms).  Finding generators is more cumbersome.

● Prime order groups are preferable (there are some more reasons why 
discussed later, see also HW)
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Choice of Discrete Logarithm Hard Groups

●  Groups that are of interest
– Z*p (does not have prime order)

– Prime order q subgroups of Z*p 

– Elliptic curve groups 

Key sizes recommended by NIST (from §9.3)

What about Zp with addition?
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Prime Order Subgroups of Z*p 

● We can “craft” p in a way that it has a prime order q subgroup of 
desired size

● Choosing uniform element in G?
– Choose random h from Z*p and compute hr mod p

● Determine if given h is in G (any h≠1 that is in G is a generator)
– Check if hq = 1 mod p

THEOREM 8.64 Let p = rq + 1 with p, q prime. Then 
G = {hr mod p | h ∈ Z*p}

is a subgroup of Z*p of order q.

p and q need to be chosen such that the running time of the NFS (depends on 
the length of p), and the running time of generic algorithms (depends on the 
length of q) will be approximately equal.

p is called safe prime if r=2 
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Elliptic Curves

● Groups discussed so far directly rely on modular arithmetic
● Why not use different groups? Elliptic curve groups?

– Only generic algorithms for the DLP known! 

Rationale: “it is extremely unlikely that an index calculus attack on the elliptic curve method 
will ever be able to work” [Miller, 85]

Victor S. Miller: Use of Elliptic 
Curves in Cryptography. 
Advances in Cryptology –
CRYPTO ’85

Neal Koblitz: Elliptic Curve 
Cryptosystems. Mathematics 
of Computation, AMS, 1987.
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What are Elliptic Curves?

● An elliptic curve E over a field (we only condsider Fp with p ≥ 5, and 
in particular large p) is a cubic equation

y2 = x3 + ax + b     (short Weierstrass equation)

with a, b ∈ Zp and -16(4a3 + 27b2) ≠ 0 mod p (the curve is “smooth”)

● Let E(Zp) = {(x, y) | x, y ∈ Zp and y2 = x3 + ax + b mod p}  {∪ { O}
– The elements in E(Zp) are called the points on the elliptic curve E
– O is called the point at infinity (it will act as the identiy) 
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Elliptic Curves over the Reals

A useful way to think about E(Zp) is to look at the graph over the reals

We can think of the point at infinity of sitting on top of the y-axis and lying on every vertical line

Every line intersecting the curve intersects in exactly three points 
● Point P is counted twice if line is tangent to the curve
● Point at infinity is counted when the line is vertical  
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Elliptic Curves: Group Law (“chord-and-tangent rule”)
● E(Zp) forms a group with additive identity O

– O + P = P + O = P for all P  ∈ E(Zp)

– If P = (x, y)  ∈ E(Zp), then (x, y) + (x, -y) = O and O -O = O
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Elliptic Curves

● For cryptographic applications and in particular for the DLP to be hard we 
need (sub-) groups of large prime order.

● How large are these elliptic curve groups?
– Let us define a quadratic residue (QR): An element y ∈ Z*p is a quadratic 

residue modulo p if there is an x ∈ Z*p such that x2 = y mod p.

– For p > 2 prime, half the elements in Z*p are QRs, and every QR has exactly 
two square roots.

– If we look at the equation y2 = x3 + ax + b, each RHS value that is a QR yields 
two points on the curve and if RHS is 0 it yields one 

– So we heuristically expect to find expect to find 2 · (p − 1)/2 + 1 = p points + 
the point of infinitey, i.e., p+1 points.

THEOREM 8.70 (Hasse bound): Let p be prime, and let E be an elliptic 
curve over Zp . Then p + 1 − 2 √p ≤ |E(Zp)| ≤ p + 1 + 2 √p.
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Elliptic Curves

● How to find curves? 
– We could just randomly generate them: But for random curves the 

group order will be “close” to uniformly distributed in the Hasse interval

– We also need to exclude weak curves, i.e., elliptic-curve groups over Z*p 
whose order is equal to p (anomalous curves) or p+1 (supersingular 
curves), etc.

– There are efficient algorithms for counting points on curves, efficiently 
generating curves

● Typically we use pre-computed standardized curves
– Standards for Efficient Cryptogrpahy (SEC) 
– National Institute of Standards and Technology (NIST)
– ECC Brainpool (RFC 5639)
– Curve25519, Curve448
– Or BN or BLS if they need to be pairing-friendly
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Elliptic Curves

● Now if we have a suitable elliptic curve group E(Zp) (or a subgroup) of 
large prime order q generated by P, we can define the set {1P, …, qP}   

● We can define the elliptic curve DLP (ECDLP) as given Q=xP to 
compute x ∈ Zq

– Analogously we can define CDH and DDH
● We can use our efficient square-and-multiply algorithm and apply it 

to this setting (double-and-add) to compute the scalar multiplication 
efficiently
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Elliptic Curves

● Although curves standardized decades ago are still widely used, there 
happened a lot in the last decades

● Starting with Kocher’99, side-channel attacks and their counter-
measures have become extremely sophisticated

● Decades of new research yielding faster, simpler and safer ways to do 
ECC

● Suspicion surrounding previous standards: Snowden leaks, dual EC-
DRBG backdoor, etc., lead to conjectured weaknesses in the NIST curves

● Other specific classes of curves enable secure cryptographic pairings 
– and thus interesting applications such as practical identity- and attribute-

based cryptography (see Guest Lecture)



   Back to Key Exchange Protocols
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Example: KE in Z*p (128 bit security – p: 3072 bit) 
  p = 

5809605995369958062859502533304574370686975176362895236661486152287203730997110225737336044533118407251326157754980517443990529594540047121662885672187
032401032111639706440498844049850989051627200244765807041812394729680540024104827976584369381522292361208779044769892743225751738076979568811309579125
511333093243519553784816306381580161860200247492568448150242515304449577187604136428738580990172551573934146255830366405915000869643732053218566832545
2911079037228316341385995864066903259597251874471690595408050123102096390117507487600170953607342349457574162729948560133086169585299583046776370191815
9408852834506128586389827176345729488354663887955431161544644633019925438234001629205709075117553388816191898729559153153669870129226768546551743791579
082315484463478026010289171803249539607504189948551381112697730747896907485704371071615012131592202455675924123901315291971095646840637944291494161435710
7914462567329693649

a =
7147687166405957187905360554739658269
24051861459165223549126157152970971006
7917003790492433011601949788108908769
6131592831386326210951294944584400497
4889298038584931918128447572321023987
1604390620061776483188754575562337708
53912505292364631833219121732146413465
58452549172283787727566955898452199622
0294508922696650742652691278024464164
0090259271040043389582611419862375878
9881936121879455918028640626798648395
78139273043684955597764130097212218249
1581096457937635455665546298837778595
68089157882151127357422042264637917059
9917677567304206984223924948169067778
96174923072071297603455802621072109220
5466273969774855354375899087960888262
7763290293452560094576029847391361388
7675543866224792652999780598864724145
3046219452761811989974647725290887806
0493179541951463829228890455778045929
4373052654104851802640020794151939838
51143425084273119820368274789460587100
3049774770692442789896899105721209635
7725203480402449913844583448

b =
655456209464694933606826858160317049
69423104727624468251177438749706128879
9577019369882685976279047911306230897
5863428283798589097017957365590672835
7138638957122466760949930089855480244
640303954430074800250796203638661931
5229886063541005322448463915897986412
1027377255837396548653931285483865070
9031919742048649235894391903529930326
7696100508840431979272991603892747747
0940948581926791161465028635214849870
86232861934222391717121545686125300672
760188085915004248494766867067840510
6871539770685266453263833240398374733
83796970226242613771631632044938282992
0603980870340357510046733708501774838
71488222248753096417918793954837317546
2003488493054039995051919167947122405
55855709321935074715577756959816370085
0920394705281936392411084436006861835
2846572496956218643721497262583322254
4865996160464558546299370165894704252
6444562415789958697265293564785696709
2689604427965012098770368450012467927
61563917639959736383038665362727158

g = 123456789

197496648183227193286262018614250555971909799762533760654008147994875775445667054218578105133138217497206890599554928429450667899476
854668595594034093493637562451078938296960313488696178848142491351687253054602202966247046105770771577248321682117174246128321195678
537631520278649403464797353691996736993577092687178385602298873558954121056430522899619761453727082217823475746223803790014235051396
799049446508224661850168149957401474638456716624401906701394472447015052569417746372185093302535739383791980070572381421729029651639
304234361268764971707763484300668923972868709121665568669830978657804740157916611563508569886847487772676671207386096152947607114559
706340209059103703018182635521898738094546294558035569752596676346614699327742088471255741184755866117812209895514952436160199336532
6052422101474898256696660124195726100495725510022002932814218768060112310763455404567248761396399633344901857872119208518550803791724

411604662069593306683228525653441872410777999220572079993574397237156368762038378332742471939666544968793817819321495269833613169937
986164811320795616949957400518206385310292475529284550626247132930124027703140131220968771142788394846592816111078275196955258045178
705254016469773509936925361994895894163065551105161929613139219782198757542984826465893457768888915561514505048091856159412977576049
073563225572809880970058396501719665853110101308432647427786565525121328772587167842037624190143909787938665842005691911997396726455
110758448552553744288464337906540312125397571803103278271979007681841394534114315726120595749993896347981789310754194864577435905673
172970033596584445206671223874399576560291954856168126236657381519414592942037018351232440467191228145585909045861278091800166330876
4073238447199488070126873048860279221761629281961046255219584327714817248626243962413613075956770018017385724999495117779149416882188

ga mod p  = 

gb mod p  = 

330166919524192149323761733598426244691224199958894654036331526394350099088627302979833339501183059198113987880066739
419999231378970715307039317876258453876701124543849520979430233302777503265010724513551209279573183234934359636696506
968325769489511028943698821518689496597758218540767517885836464160289471651364552490713961456608536013301649753975875
610659655755567474438180357958360226708742348175045563437075840969230826767034061119437657466993989389348289599600338
950372251336932673571743428823026014699232071116171392219599691096846714133643382745709376112500514300983651201961186
613464267685926563624589817259637248558104903657371981684417053993082671827345252841433337325420088380059232089174946
086536664984836041334031650438692639106287627157575758383128971053401037407031731509582807639509448704617983930135028
7596589383292751993079161318839043121329118930009948197899907586986108953591420279426874779423560221038468

gab mod p  = 
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Example: KE using Elliptic Curves (128 bit security – p: 256 bit)  

  a=
89130644591246
03357763977064
14628550231450
28492835255603
183721922317324
614395

  b=
10095557463932
78641880693831
61907080327719
10919058405391
67978108219340
5190826

p = 2256 − 2224 + 2192 + 296 − 1
NIST Curve P-256

p = 115792089210356248762697446949407573530086143415290314195533631308867097853951

E(Fp) : y2 = x3 − 3x + b
#E = 115792089210356248762697446949407573529996955224135760342422259061068512044369

P = (48439561293906451759052585252797914202762949526041747995844080717082404635286,
36134250956749795798585127919587881956611106672985015071877198253568414405109)

(8411620826131589816759306786820052561234422188633
3785331584793435449501658416, 
1028856555421855980267392501728853001096802660585
48048621945393128043427650740)

aP  = 

bP  = 
(101228882920057626679704131545407930245895491542
090988999577542687271695288383,
7788741819030402299411659503455625776080718561567
9689372138134363978498341594)

(101228882920057626679704131545407930245895491542090988999577542687271695288383,
77887418190304022994116595034556257760807185615679689372138134363978498341594)

abP  = 
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Diffie–Hellman(–Merkle) KE Protocol 

● Now we are going to abstract away again the concrete setting and 
consider a group G of prime order q and generator g

Ok, how to prove security of this protocol?
– Under DL? Other means of computing shared key? 
– Under CHD? Only the complete shared key protected?
– Under DDH? 

? ? ?

* definitional framework and idea of formulating assumptions not known back in the 70ies
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Security Definition

A key-exchange protocol Π is secure in the presence of an eavesdropper 
if for every PPT adversary    

(G, q, g) ←$ G(1n)

(G, q, g)(G, q, g)

   G
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Analysis of the DH(M) KE Protocol 

Proof: Let A be a PPT adversary. 
● Since Pr[b = 0] = Pr[b = 1] = ½, we have 

THEOREM 10.3: If the DDH problem is hard relative to G, then the Diffie–
Hellman key-exchange protocol Π is secure in the presence of an eaves-
dropper (with respect to experiment           ).  

≤ negl(n)
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Analysis of the DH(M) KE Protocol 

● Summary
– Can prove eavesdropping security under DDH (not surprising; the 

assumption was basically modeled to abstract the analysis of these 
protocols)

● What did we miss so far?
– Active adversaries: Man-in-the-middle 

shared key shared key



29/31

Countering man-in-the-middle attacks (Authenticated KE - AKE)

          Authenticate with signature using  

Establishing key         using Diffie-
Hellman key exchange

Encrypt Decrypt

Certified signature verification key Signing key

Will talk about signatures soon!
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Perfect Forward Secrecy

Another important property: Perfect forward secrecy

time

k1

k2

k3

k4
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Alternatives to DL based KE Protocols: Outlook

● Shor: computing discrete logarithms (and factoring) 
in polynomial time on a quantum computer
– If we have a sufficiently powerful quantum computer, 

then DL and ECDL (as well as factoring) based systems 
will be dead

● What to do if this should happen?
– Post-quantum cryptography: (asymmetric) cryptography that is conjectured 

to resists attacks using classical and quantum computers
● Very active field of research

– Lattices
– Codes
– Isogenies (e.g., on supersingular elliptic curves – weak for EC crypto but 

good for PQ)
– Etc.

https://csrc.nist.gov/projects/post-quantum-cryptography

Peter Shor
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